วันพุธที่ 21 ตุลาคม พ.ศ. 2563

บทที่ 1 ความปลอดภัยในห้องปฏิบัติการ

 ความปลอดภัยในห้องปฏิบัติการ

1.1 ความปลอดภัยในการทำงานกับสารเคมี

    1.1.1 ประเภทของสารเคมี 
สารเคมีมีหลายประเภท แต่ละประเภทมีสมบัติต่างกัน สารเคมีจึงจำเป็นต้องมีฉลากที่มีข้อมูลเกี่ยวกับความเป็นอันตรายของตัวมันเองเพื่อความปลอดภัยในการจัดเก็บ การนำไปใช้ และการกำจัด โดยฉลากควรมีข้อมูลดังนี้
  1. ชื่อผลิตภัณฑ์ 
  2. รูปสัญลักษณ์ แสดงความเป็นอัตรายของสารเคมี
  3. คำเตือน ข้อมูลความเป็นอันตราย และข้อควรระวัง
  4. ข้อมูลของบริษัทผู้ผลิตสารเคมี
ตัวอย่างฉลาก

และควรมีสัญลักษณ์แสดงความเป็นอันตรายด้วย

ตัวอย่างสัญลักษณ์แสดงความเป็นอันตรายในระบบ GHS

ตัวอย่างสัญลักษณ์แสดงความเป็นอันตรายในระบบ NFPA

    1.1.2 ข้อควรปฏิบัติในการทำปฏิบัติการเคมี
    ก่อนทำปฏิบัติการ
    1) ศึกษาขั้นตอนหรือวิธีการทำปฏิบัติการให้เข้าใจ วางแผนการทดลอง หากมีข้อสงสัยให้สอบถามก่อนทดลอง
    2) ศึกษาข้อมูลของสารที่ใช้ทดลอง เทคนิคการใช้เครื่องมือ วัสดุอุปกรณ์รวมถึงวิธีการทดลองที่ถูกต้อง
    3) แต่งกายให้เหมาะสม 

    ขณะปฏิบัติการ
    1) ข้อปฏิบัติโดยทั่วไป
       1.1 สวมแว่นตานิรภัย ติดกระดุมเสื้อคลุมทุกเม็ด สวมถุงมือเมื่อใช้สารกัดกร่อนหรือสารอันตราย สวมผ้าปิดปากเมื่อใช้สารเคมีที่มีไอระเหย และทำการปฏิบัติการในที่ซึ่งอากาศถ่ายเทหรือในตู้ดูดควัน
       1.2 ห้ามรับประทานอาหารและเครื่องดื่มหรือทำกิจกรรมอื่นๆที่ไม่เกี่ยวข้องกับการปฏิบัติการ
       1.3 ไม่ทำการทดลองตามลำพัง
       1.4 ไม่เล่นและไม่รบกวนผู้อื่นขณะทำการปฏิบัติการ
       1.5 ทำตามขั้นตอนและวิธีการอย่างเคร่งครัด
       1.6 ไม่ปล่อยให้อุปกรณ์ให้ความร้อนทำงานโดยไม่มีคนดูแล
   
   2) ข้อปฏิบัติในการใช้สารเคมี
       2.1 อ่านชื่อสารเคมีบนฉลากให้แน่ใจก่อนใช้
       2.2 เคลื่อนย้าย แบ่ง ถ่ายเท สารเคมีด้วยความระมัดระวัง
       2.3 หันปากหลอดทดลองออกจากตัวเองและผู้อื่นเสมอ
       2.4 ห้ามชิมหรือสูดดมสารเคมีโดยตรง
       2.5 การเจือจางกรด ให้เทกรดลงน้ำ
       2.6 ไม่เทสารเคมีที่เหลือจากการเทหรือตักออกจากขวดลงขวดเดิมโดยเด็ดขาด
       2.7 เมื่อสารเคมีหกเล็กน้อยให้กวาดหรือเช็ดแต่ถ้าหกมากให้แจ้งครูผู้สอน

    หลังปฏิบัติการ
    1) ทำความสะอาดอุปกรณ์รวมทั้งทำความสะอาดโต๊ะปฏิบัติการ
    2) ถอดอุปกรณ์ป้องกันอัตรายก่อนออกจากห้อง

    1.1.3 การกำจัดสารเคมี 
    1) สารเคมีที่ละลายน้ำได้และมี pH เป็นกลาง ปริมาณไม่เกิน 1 ลิตรสามารถเททิ้งลงอ่างน้ำได้
    2) สารละลายเข้มข้นบางชนิดควรเจือจางก่อนเทลงอ่างน้ำ ถ้าปริมาณมากต้องทำให้เป็นกลางก่อน
    3) สารที่เป็ของแข็งไม่อันตรายไม่เกิน 1 กิโลกรัม สามารถใส่ภาชนะปิดมิดติดฉลากให้ชัดเจนและทิ้งในที่ซึ่งเตรียมไว้ได้เลย
    4) สารไวไฟ ตัวทำลำลายไม่ละลายน้ำ สารประกอบของโลหะเป็นพิษหรือสารที่ทำปฏิกิริยากับน้ำห้ามทิ้งลงอ่างน้ำ

1.2 อุบัติเหตุจากสารเคมี

    การปฐมพยาบาลเมื่อร่างกายสัมผัสสารเคมี
  1. ถอดเสื้อผ้าที่เปื้อนสารเคมีออกและซับสารออกจากร่างกายให้มากที่สุด
  2. กรณีที่สารเคมีละลายน้ำได้ให้ล้างออกโดยให้น้ำไหลผ่านมากๆ
  3. กรณีที่สารเคมีไม่ละลายน้ำให้ล้างด้วยน้ำสบู่
  4. หกทราบว่าสารที่โดนตัวคือสารอะไรให้ปฏิบัติตามข้อกำหนดในเอกสารความปลอดภัย
กรณีที่ร่างกายสัมผัสกับสารเคมีในปริมาณมากหรือความเข้มข้นสูงให้ปฐมพยาบาลแล้วนำส่งแพทย์

    การปฐมพยาบาลเมื่อสารเคมีเข้าตา

      ล้างตาโดยการเปิดน้ำเบาๆไหลผ่านดั้งให้น้ำไหลผ่านเข้าตาข้างที่ดดนสารเคมี พยายามลืมตาและกรอกตาในน้ำอย่างน้อย 10 นาทีหรือจนกว่าจะแน่ใจว่าชะสารออกหมดแล้ว ระวังไม่ให้น้ำเข้าตาอีกข้างแล้วนำส่งแพทย์ทันที

    การปฐมพยาบาลเมื่อสูดดมแก๊สพิษ 
  1. รีบออกจากบริเวณทีี่มีแก๊สพิษเกิดขึ้น
  2. รีบเคลื่อนย้ายผู้ที่หมดสติออกจากบริเวณโดยผู้ช่วยเหลือต้องสวมอุปกรณ์ป้องกันให้เหมาะสม
  3. ปลดเสื้อผ้าให้ผู้ประสบอุบัติเหตุหายใจสะดวกขึ้น หากหมดสติให้จับนอนคว่ำและตะแคงหน้าไปทางใดทางหนึ่ง
  4. สังเกตการเต้นของหัวใจและการหายใจ หากหยุดหายใจให้ผายปอดแต่ไม่ควรใช้วิธีเป่าปากและนำส่งแพทย์

    การปฐมพยาบาลเมื่อโดนความร้อน

      แช่น้ำเย็นหรือปิดแผลด้วยผ้าชุบน้ำจนหายแสบร้อน ทายาขี้ผึ้งสำหรับไฟไหม้และน้ำร้อนลวกแล้วนำส่งแพทย์

กรณีที่สารเคมีเข้าปากให้ปฏิบัติตามคำแนะนำตามเอกสารความปลอดภัยแล้วนำส่งแพทย์ทุกกรณี


1.3 การวัดปริมาณสาร

    ในการปฏิบัติการเคมีจำเป็นต้องมีการชั่ง ตวง วัดปริมาณสาร ซึ่งมีความคลาดเคลื่อนที่อาจเกิดจากอุปกรณืที่ใช้ หรือผู้ทำปฏิบัติการ ที่จะส่งผลให้การทดลองที่ได้มีค่าต่างจากค่าจริง
    ความน่าเชื่อถือของข้อมูล พิจารณาได้จากความเที่ยงและความแม่นของข้อมูล คือความใกล้เคียงกันของค่าที่ได้จากการวัดซ้ำและความใกล้เคียงจากการวัดซ้ำเทียบกับค่าจริง โดยขึ้นอยู่กับทักษะของผู้ที่ทำการวัดและความละเอียดของอุปกรณ์ที่ใช้

    1.3.1 อุปกรณ์วัดปริมาตร
    บีกเกอร์ (beaker) - เป็นทรงกระบอกปากกว้าง มีขีดบอกปริมาตรในระดับมิลลิลิตร มีหลายขนาด


    ขวดรูปกรวย (erlenmeyer flask) - คล้ายผลชมพู่ มีขีดบอกปริมาตรในระดับมิลลิลิตร มีหลายขนาด


    กระบอกตวง (measuring cylinder) - ทรงกระบอก มีขีดบอกปริมาตรในระดับมิลลิลิตร มีหลายขนาด


    ปิเปตต์ (pipette) - เป็นอุปกรณ์วัดปริมาตรที่มีความแม่นสูง ใช้สำหรับถ่ายเทของเหลว มี 2 แบบ คือ แบบปริมาตรซึ่งมีกระเปาะตรงกลาง  มีขีดบอกปริมาตรเพียงค่าเดียวและแบบใช้ตวง มีขีดบอกปรอมาตรหลายค่า


    บิวเรตต์ (burette) - เป็นอุปกรณ์สำหรับถ่ายเทของเหลวในปริมาตรต่างๆตามต้องการ ลักษณะเป็นทรงกระบอกยาวที่มีขีดบอกปริมาตร และมีอุปกรณ์ควบคุมการไหลของของเหลวที่เรียกว่า ก๊อกปิดเปิด 


    ขวดกำหนดปริมาตร (volumetric flask) - เป็นอุปกรณ์สำหรับวัดปริมาตรของเหลวที่บรรจุภายใน ใช้สำหรับเตรียมสารละลายที่ต้องการความเข้มข้นแน่นอน มีขีดบอกปริมาตรเพียงขีดเดียว มีจุกปิดสนิท มีหลายขนาด


    1.3.2 อุปกรณ์วัดมวล
     เครื่องชั่ง เป็นอุปกรณ์สำหรับวัดมวลของสารทั้งที่เป็นของแข็งและของเหลว ความน่าเชื่อถือของค่ามวลที่วัดได้ขึ้นอยู่กับความละเอียดของเครื่องชั่งและวิธีการใช้เครื่องชั่ง ที่ใช้ในห้องปฏิบัติการเคมีโดยทั่วไปมี 2 แบบ คือ เครื่องชั่งแบบสามคานและเครื่องชั่งไฟฟ้า 

เครื่องชั่งแบบสามคาน

เครื่องชั่งไฟฟ้า

    1.3.3 เลขนัยสำคัญ
    การนับเลขนัยสำคัญ  มีหลักการดังนี้
  1. ตัวเลขที่ไม่มีเลข 0 ทั้งหมดนับเป็นเลขนัยสำคัญ
  2. 0 ที่อยู่ระหว่างตัวเลขอื่น นับเป็นเลขนัยสำคัญ
  3. 0 ที่อยู่หน้าตัวเลขอื่น ไม่นับเป็นเลขนัยสำคัญ
  4. 0 ที่อยู่อยู่หลังตัวเลขอื่นที่อยู่หลังทศนิยม นับเป็นเป็นเลขนัยสำคัญ
  5. 0 ที่อยู่หลังเลขอื่นที่ไม่มีทศนิยม อาจนับหรือไม่นับเป็นเลขนัยสำคัญก็ได้
  6. ตัวเลขที่แม่นตรงเป็นตัวเลขที่ซ้ำเข้าแน่นอนมีเลขนัยสำคัญเป็น อนันต์ 
  7. ข้อมูลที่มีค่าน้อยมากๆหรือเขียนในรูปของสัญกรณ์วิทยาศาสตร์ ตัวเลข สัมประสิทธิ์ ทุกตัวนับเป็นนัยสำคัญ

    การปัดตัวเลข  พิจารณาจากตัวเลขที่อยู่ถัดจากตำแหน่งที่ต้องการ ดังนี้

  1. กรณีที่ตัวเลขถัดจากตำแหน่งที่ต้องการมีค่าน้อยกว่า 5 ให้ตัดตัวเลขที่อยู่ถัดไปทั้งหมด
  2. กรณีที่ตัวเลขถัดจากตำแหน่งที่ต้องการมีค่ามากกว่า 5 ให้เพิ่มค่าของตัวเลขตำแหน่งสุดท้ายที่ต้องการอีก 1 
  3. กรณีที่ตัวเลขถัดจากตำแหน่งที่ต้องการมีค่าเท่ากับ 5 และมีตัวเลขอื่นที่ไม่ใช่ 0 ต่อจากเลข 5 ให้เพิ่มค่าของตัวเลขตำแหน่งสุดท้ายที่ต้องการอีก 1 
  4. กรณีที่ตัวเลขถัดจากตำแหน่งที่ต้องการมีค่าเท่ากับ 5 และไม่มีตัวเลขอื่นต่อจากเลข 5 ต้องพิจารณาตัวเลขที่อยู่ หน้าเลข 5 ดังนี้
           4.1 หากตัวเลขที่อยู่หน้าเลข 5 เป็นเลขคี่ ให้ตัวเลขดังกล่าวบวกค่าค่าเพิ่มอีก 1 แล้วตัดตัวเลขตั้งแต่ 5 ลงไปทั้งหมดออก

           4.2 หากตัวเลขที่อยู่หน้าเลข 5 เป็นเลขคู่ ให้ตัวเลขกล่าวเป็นตัวเลขเดิม แล้วตัดตัวเลขตั้งแต่ 5 ลงไปทั้งหมดออก

1.4 หน่วยวัด

    1.4.1 หน่วยในระบบ SI

 หน่วย SI พื้นฐาน มี 7 หน่วย ได้แก่
  1. มวล - กิโลกรัม (kg)
  2. ความยาว - เมตร (m)
  3. เวลา - วินาที (s)
  4. อุณหภูมิ - เคลวิน (K)
  5. ปริมาณของสาร - โมล (mol)
  6. กรพแสไฟฟ้า - แอมแปร์ (A)
  7. ความเข้มแห่งการส่องสว่าง - แคนเดลลา (cd)
หน่วย SI อนุพันธ์
  1. ปริมาตร - ลูกบาศก์เมตร (m³)
  2. ความเข้มข้น - โมลต่อลูกบาศก์เมตร (mol/m³)
  3. ความหนาแน่น - กิโลกรัมต่อลูกบาศก์เมตร (kg/m³)
หน่วยนอกระบบ SI

     เช่น ปริมาตร - ลิตร  มวล - กรัม , ดอลตัน , หน่วยมวลอะตอม  ความดัน - บาร์ , มิลลิเมตรปรอท , บรรยากาศ ฯลฯ

    1.4.2 แฟกเตอร์เปลี่ยนหน่วย
    เป็นอัตราส่วนระหว่างหน่วยที่แตกต่างกัน 2 หน่วยที่มีปริมาณเท่ากัน

    วิธีการเทียบหน่วย
    ทำได้โดยการคุูณปริมาณในหน่วยเริ่มต้นด้วยแฟกเตอร์เปลี่ยนหน่วยที่มีหน่วยที่ต้องการอยู่ด้านบน ตามสมการ

ปริมาณและหน่วยที่ต้องการ = ปริมาณและหน่วยเริ่มต้น x หน่วยที่ต้องการ / หน่วยเริ่มต้น

1.5 วิธีการทางวิทยาศาสตร์

เป็นการศึกษาหาความรู้ทางวิทยาศสาตร์ที่มีแบบแผนขั้นตอน โดยภาพรวมทำได้ดังนี้

  1. การสังเกต - อาศัยประสาทสัมผัะสทั้ง 5 โดยจะนำไปสู่ข้อสงสัยหรือตั้งคำถามที่ต้องการคำตอบ
  2. การตั้งสมมติฐาน - เป็นการคาดเดาคำตอบของคำถามหรือปัญหา โดยมีพื้นฐานจากการสังเกต ความรู้ หรือประสบการณ์เดิม
  3. การตรวจสอบสมมติฐาน - เป็นกระบวนการหาคำตอบของสมมติฐาน โดยมีการออกแบบการทดลองที่มีการควบคุมปัจจัยต่างๆ
  4. การรวบรวมข้อมูลและวิเคราะห์ผล - เป็นการนำข้อมูลที่ได้จากขั้นตอนทั้งหมดมารวบรวม วิเคราะห์ และอธิบายข้อเท็จจริง
  5. การสรุปผล - เป็นการสรุปความรู้หรือข้อเท็จจริงที่ได้จากการตรวจสอบสมมติฐานที่ตั้งไว้ก่อนหน้า 

บทที่ 2 อะตอมเเละสมบัติของธาตุ

 อะตอมเเละสมบัติของธาตุ

 อะตอมประกอบด้วยอนุภาคที่มีขนาดเล็กมากเเละไม่สามารถมองเห็นได้ด้วยตาเปล่า ซึ่งเเนวคิดนี้ได้เริ่มขึ้นในสมัยกรีกโบราณ โดยดิโมคริตุส คำว่า อะตอม (atom) ซึ่งมาจากคำในภาษากรีก ซึ่งเเปลว่า "เเบ่งเเยกอีกไม่ได้"
2.1 เเบบจำลองอะตอม
      2.1.1 แบบจำลองอะตอมของจอร์น ดอลตัน 

         ในปี พ.ศ. 2346 (ค.ศ. 1803) จอห์น ดอลตัน (John Dalton) นักวิทยาศาสตร์ชาวอังกฤษได้เสนอทฤษฎีอะตอมเพื่อใช้อธิบายเกี่ยวกับการเปลี่ยนแปลงของสารก่อนและหลังทำปฏิกิริยา รวมทั้งอัตราส่วนโดยมวลของธาตุที่รวมกันเป็นสารประกอบ ซึ่งสรุปได้ดังนี้
         1. ธาตุประกอบด้วยอนุภาคเล็กๆหลายอนุภาคเรียกอนุภาคเหล่านี้ว่า “อะตอม” ซึ่งไม่สามารถแบ่งแยกได้อีก
         2. อะตอมไม่สามารถทำให้เกิดใหม่และทำให้สูญหายได้
         3. อะตอมของธาตุชนิดเดียวกันมีมวลเท่ากันเเละมีสมบัติเหมือนกัน 
         4. สารประกอบเกิดจากการรวมตัวระหว่างอะตอมด้วยอัตราส่วนที่เป็นเลขลงตัวน้อยๆ
         5. อะตอมของธาตุตั้งเเต่ 2 ชนิดขึ้นไป อาจรวมตัวกันเเละเกิดสารประกอบมากกว่า 1 ชนิด


         ทฤษฎีอะตอมของดอลตันใช้อธิบายลักษณะและสมบัติของอะตอมได้เพียงระดับหนึ่ง แต่ต่อมานักวิทยาศาสตร์ค้นพบข้อมูลบางประการที่ไม่สอดคล้องกับทฤษฎีอะตอมของ ดอลตัน เช่น พบว่าอะตอมของธาตุชนิดเดียวกันอาจมีมวลแตกต่างกันได้   
ลักษณะแบบจำลองอะตอมของดอลตัน

"ทรงกลมตันมีขนาดเล็กที่สุดซึ้งแบ่งแยกอีกไม่ได้"


      2.1.2 แบบจำลองอะตอมของทอมสัน
     เซอร์โจเซฟ จอห์น ทอมสัน นักวิทยาศาสตร์ชาวอังกฤษ ได้ทำการศึกษาและทดลองเกี่ยวกับการนำไฟฟ้าของก๊าซโดยใช้หลอดรังสีแคโทด
หลอดรังสีเเคโทด
        เซอร์วิลเลียมครูกส์ เป็นผู้ประดิษฐ์หลอดรังสีเเคโทดเพื่อใช้ในการทดลองเกี่ยวกับการนำไฟฟ้าของแก๊ส ซึ่งหลอดรังสีเเคโทดมีส่วนประกอบดังนี้
        1. ขั้วเเคโทด (Cathode)
        2. ขั้วเเอโนด (Anode)
        3. เครื่องวัดกระเเสไฟฟ้า
        4. เครื่องกำเนิดไฟฟ้าศักย์สูง
เมื่อผ่านกระเเสไฟฟ้าศักย์สูงเข้าไปในหลอดรังสีเเคโทด จะเกิดรังสีพุ่งออกมาจากรังสีเเคโทดไปยังแอโนดซึ่งตรวจสอบรังสีนี้ได้ด้วยสารเรืองเเสง
  

สรุปแบบจำลองของทอมสัน
      
จากผลการทดลอง ทั้งของทอมสันและโกลด์สไตน์ ทำให้ทอมสันได้ข้อมูลเกี่ยวกับอะตอมมากขึ้น จึงได้เสนอแบบจำลองอะตอม ดังนี้ อะตอมมีลักษณะเป็นทรงกลมประกอบด้วยอนุภาคโปรตอนที่มีประจุไฟฟ้าเป็นบวกและอนุภาคอิเล็กตรอนที่มีประจุไฟฟ้าเป็นลบ กระจัดกระจายอย่างสม่ำเสมอในอะตอมอะตอมที่มีสภาพเป็นกลางทางไฟฟ้าจะมีจำนวนประจุบวกเท่ากับจำนวนประจุลบ

"อะตอมเป็นทรงกลม ประกอบด้วยอนุภาคที่มีประจุบวก(โปรตอน) 
เเละอนุภาคที่มีประจุลบ(อิเล็กตรอน) กระจายอยู่ทั่วไป 
อะตอมมีสภาพเป็นกลางทางไฟฟ้า โดยมีประจุบวกเท่ากับประจุลบ"

     
      2.1.3 แบบจำลองอะตอมของรัทเทอร์ฟอร์ด
               หลังจากนักวิทยาศาสตร์ชาวฝรั่งเศษชื่อ เบเคอรอล ได้พบสารกัมมันตรังสี เเละเรินต์เกน ค้นพบรังสีเอ็กซ์(X-ray) รัทเทอฟอร์ดได้ทำการศึกษาธรรมชาติของรังสีที่เกิดจากสารกัมมันตรังสีพบว่ารังสีที่เกิดจากการสลายตัวของสารกัมมันตรังสีอยู่ 3 ชนิด คือ
                1.รังสีแอลฟาหรืออนุภาคแอลฟา เป็นนิวเคลียสของอะตอมฮีเลียม มีโปรตอนและนิวตรอนอย่างละ 2 อนุภาค มีประจุไฟฟ้า +2 มีเลขมวล 4 มีอำนาจทะลุทะลวงต่ำ
                2.
รังสีบีตาหรืออนุภาคบีตา มีสมบัติเหมือนอิเล็กตรอน มีประจุไฟฟ้า -1 มีมวลเท่ากับอิเล็กตรอน มีอำนาจทะลุทะลวงสูงกว่ารังสีแอลฟา สามารถผ่านแผ่นโลหะบางๆ ได้ 
                3.รังสีเเกมมา เป็นคลื่อนแม่เหล็กไฟฟ้าที่มีความยาวคลื่นสั้นมาก ไม่มีประจุ ไม่มีมวล เป็นรังสีที่มีพลังงานสูง มีความเร็วเท่ากับความเร็วแสงและมีอำนาจทะลุทะลวงสูง สามารถผ่านแผ่นตะกั่วหนา 8 mm

               ลอร์ดเออร์เนสท์ รัทเทอร์ฟอร์ด นักวิทยาศาสตร์ชาวนิวซีเเลนด์  เเละฮันส์ ไกเกอร์ เเละมาร์สเคน ได้ทดลองใช้อนุภาคแอลฟายิงไปยังโลหะเเผ่นบางๆ เเละใช้ฉากเรืองเเสงซึ่งฉาบด้วยซิงค์ซัลไฟด์ (ZnS) โค้งเป็นวงกลมเป็นฉากรับอนุภาคแอลฟาเพื่อตรวจสอบทิศทางการเคลื่อนที่ของอนุภาคแอลฟา


สรุปแบบจำลองอะตอมของรัทเทอร์ฟอร์ด
               
อะตอมประกอบด้วยนิวเคลียสที่มีโปรตอนรวมกันอยู่ตรงกลาง นิวเคลียสมีขนาดเล็ก แต่มีมวลมากและมีประจุเป็นบวก ส่วนอิเล็กตรอนซึ่งมีประจุเป็นลบ และมีมวลน้อยมาก จะวิ่งอยู่รอบนิวเคลียสเป็นบริเวณกว้าง

"อะตอมประกอบด้วยนิวเครียสที่มีโปรตรอนรวมกัน
อยู่ตรงกลางนิวเครียสมีขนาดเล็ก เเต่มีมวลมาก"


      2.1.4 แบบจำลองอะตอมของนีลโบร์ 
               โบร์ได้เสนอแบบจำลองขึ้นมาใหม่โดยปรับปรุงแบบจำลองอะตอมของรัทเทอร์ฟอร์ด เพื่อให้เห็นลักษณะของอิเล็กตรอนที่อยู่รอบ ๆ นิวเคลียส เป็นวงคล้ายกับวงโคจรของดาวเคราะห์รอบดวงอาทิตย์ ดังรูป

สรุปแบบจำลองอะตอมของบอห์ร                                1. อิเล็กตรอนจะอยู่เป็นชั้น ๆ แต่ละชั้นเรียกว่า 
“ ระดับพลังงาน ”
                
               2. แต่ละระดับพลังงานจะมีอิเล็กตรอนบรรจุได้ดังนี้                             
จำนวนอิเล็กตรอน = 2n2                
               3. อิเล็กตรอนที่อยู่ในระดับพลังงานนอกสุดเรียกว่า เวเลนซ์อิเล็กตรอน ( Valence electron ) จะเป็นอิเล็กตรอนทีเกิดปฏิกิริยาต่าง ๆ ได้ 
                
               4. อิเล็กตรอนที่อยู่ในระดับพลังงานวงใน อยู่ใกล้นิวเคลียสจะเสถียรมาก เพราะประจุบวกจากนิวเคลียสดึงดูด
เอาไว้อย่างดี ส่วนอิเล็กตรอนระดับพลังงานวงนอกจะไม่เสถียรเพราะนิวเคลียสส่งแรงไปดึงดูดได้น้อยมาก จึงทำให้อิเล็กตรอนเหล่านี้หลุดออกจากอะตอมได้ง่าย                         5. ระดับพลังงานวงในจะอยู่ห่างกันมาก ส่วนระดับพลังงานวงนอกจะอยู่ชิดกันมาก              
               6. การเปลี่ยนระดับพลังงานของอิเล็กตรอน ไม่จำเป็นต้องเปลี่ยนในระดับถัดกัน อาจเปลี่ยนข้ามระดับพลังงานก็ได้

"อะตอมประกอบด้วยนิวเครียสเป็นกลาง
ซึ่งมีโปรตรอนเเละนิวตรอนอยู่ภายใน
เเละมีอิเล็กตรอนวิ่งอยู่รอบๆ ในลักษณะเป็นชั้นๆ"



      2.1.5 แบบจำลองอะตอมแบบกลุ่มหมอก              
               แบบจำลองอะตอมแบบกลุ่มหมอก แบบจำลองอะตอมของโบร์ ใช้อธิบายเกี่ยวกับเส้นสเปกตรัมของธาตุไฮโดรเจนได้ดี แต่ไม่สามารถอธิบายเส้นสเปกตรัมของอะตอมที่มีหลายอิเล็กตรอนได้ จึงได้มีการศึกษาเพิ่มเติม โดยใช้ความรู้ทางกลศาสตร์ควันตัม สร้างสมการเพื่อคำนวณหาโอกาสที่จะพบอิเล็กตรอนในระดับพลังงานต่างๆ จึงสามารถอธิบายเส้นสเปกตรัมของธาตุได้ถูกต้องกว่าอะตอมของโบร์ ลักษณะสำคัญของแบบจำลองอะตอมแบบกลุ่มหมอกอธิบายได้ดังนี้
                     
               1. อิเล็กตรอนเคลื่อนที่รอบนิวเคลียสอย่างรวดเร็วตลอดเวลาด้วยความเร็วสูง ด้วยรัศมีไม่แน่นอนจึงไม่สามารถบอกตำแหน่งที่แน่นอนของอิเล็กตรอนได้บอกได้แต่เพียงโอกาสที่จะพบอิเล็กตรอนในบริเวณต่างๆ ปรากฏการณ์แบบนี้นี้เรียกว่ากลุ่มหมอกของอิเล็กตรอน บริเวณที่มีกลุ่มหมอกอิเล็กตรอนหนาแน่น จะมีโอกาสพบอิเล็กตรอนมากกว่าบริเวณที่เป็นหมอกจาง   
               2. การเคลื่อนที่ของอิเล็กตรอนรอบนิวเคลียสอาจเป็นรูปทรงกลมหรือรูปอื่น ๆ ขึ้นอยู่กับระดับพลังงานของอิเล็กตรอน แต่ผลรวมของกลุ่มหมอกของอิเล็กตรอนทุกระดับพลังงานจะเป็นรูปทรงกลม


"อะตอมประกอบด้วยกลุ่มหมอกของอิเล็กตรอนรอบนิวเครียส
มีลักษณะเป็นทรงกลม บริเวณกลุ่มหมอกทึบเเสดงว่าโอกาส
พบอิเล็กตรอนใกล้นิวเครียสเเละบริเวณที่กลุ่มหมอกจาง
โอกาสที่จะพบอิเล็กตรอนไกลนิวเครียส"


 


2.2 อนุภาคในอะตอมเเละไอโซโทป
      2.2.1 อนุภาคในอะตอม
                  
ในปี พ.ศ. 2451 รอเบิร์ต แอนดรูส์ มิลลิแกน นักวิทยาศาสตร์ชาวอเมริกันได้ทำการหาค่าประจุของอิเล็กตรอนโดยอาศัยการสังเกตหยดน้ำมันในสนามไฟฟ้า

การทดลองของมิลลิแกน

     มิลลิแกนทดลองโดยฉีดน้ำมันเป็นฝอยเล็กๆ ซึ่งมันมีความหนาแน่นมากกว่าอากาศจึงค่อยๆตกผ่านช่องโลหะแผ่นบนลงมาชนแผ่นล่างเมื่อต่อความต่างศักย์เข้ากับแผ่นโลหะทั้งสองพบว่าบางหยดเคลื่อนที่ลง บางหยดเคลื่อนที่ขึ้นบางหยดหยุดนิ่ง หรืเคลื่อนที่ด้วยอัตราเร็วคงที่

เครื่องมือที่มิลลิแกนใช้ทดลองเป็นกล่องปิดมิดชิด ซึ่งมีส่วนประกอบที่สำคัญคือ แผ่นโลหะคู่ขนาน แผ่นบนเจาะรูเล็ก ๆ ด้านบนมีท่อสำหรับฉีดน้ำมัน ซึ่งปากกระบอกมี

รูเล็กมาก หยดน้ำมันเล็ก ๆ ที่ถูกฉีดออกมา จะเคลื่อนที่ผ่านช่องของแผ่นโลหะ โดยทั่วไปหยดน้ำมันจะมีสภาพเป็นกลางทางไฟฟ้า เมื่อเคลื่อนที่เสียดสีกับอากาศหรือปากหลอดจะทำให้หยดน้ำมันบางหยดเสียอิเล็กตรอนไปจึงมีประจุไฟฟ้าเป็นบวก และหยดน้ำมันบางหยดจะรับอิเล็กตรอนเพิ่ม ทำให้มีประจุไฟฟ้าเป็น ถ้าแผ่นโลหะไม่มีความต่างศักย์ไฟฟ้า หยดน้ำมันจะเคลื่อนที่ลงภายใต้แรงดึงดูดของโลกด้วยความเร่งเท่ากับ g เราสามารถหาประจุอิสระในหยดน้ำมันได้ โดยการปรับความต่างศักย์ไฟฟ้าระหว่างแผ่นโลหะ และถ้าจัดความต่างศักย์ไฟฟ้าให้พอเหมาะจะมี หยดน้ำมันบางหยดลอยนิ่งอยู่กับที่ หรือเคลื่อนที่ขึ้นหรือลงด้วยความเร็วคงที่ ถ้าไม่คำนึงถึงแรงลอยตัวและแรงหนืด แสดงว่าแรงที่เกิดจากสนามไฟฟ้า E และแรงโน้มถ่วงของโลกที่กระทำกับหยดน้ำมันจุมีค่าเท่ากัน

สรุปได้ว่า บนหยดน้ำมันแต่ละหยดที่มีประจุไฟฟ้าลบนั้นได้รับอิเล็กตรอนเพิ่มเป็นจำนวนต่าง ๆ กัน เช่น เป็น 2,3, 4,...ตัว โดยประจุไฟฟ้าของอิเล็กตรอนหนึ่งตัวมีขนาดเท่ากับ 1.6 x 10-19 คูลอมบ์ และใช้สัญลักษณ์ e แทนค่าประจุไฟฟ้าของอิเล็กตรอน

 


             อะตอมประกอบด้วยอนุภาคมูลฐานที่สำคัญ 3 อนุภาค ได้แก่ โปรตอน  นิวตรอน และอิเล็กตรอน 


 จากตาราง
           อะตอมที่เป็นกลางทางไฟฟ้าจะมีประจุบวกเท่ากับประจุลบ แสดงว่าในอะตอมมีจำนวนโปรตอนเท่ากับจำนวนอิเล็กตรอนซึ่งในอะตอมจะมีโปรตอนจำนวนเท่ากับ "เลขอะตอม"
                                                      จำนวนโปรตอน = จำนวนอิเล็กตรอน
           โปรตอนกับนิวตรอนเป็นอนุภาคที่มีน้ำหนักมากเมื่อเทียบกับอิเล็กตรอน ดังนั้นมวลของอะตอมก็คือจำนวนโปรตอนรวมกับจำนวนนิวตรอน นั่นคือ "เลขมวล"
                                                       เลขมวล = จำนวนโปรตอน + จำนวนนิวตรอน    
      
        2.2.2 เลขอะตอม เลขมวล เเละไอโซโทป
                          จากการศึกษาเกี่ยวกับโครงสร้างของอะตอม โดยมีข้อมูลต่างๆ จากการทดลองมาสนับสนุน สรุปได้ว่า อะตอมของธาตุต่างๆ จะประกอบด้วยอิเล็กตรอน โปรตอนและนิวตรอน (ยกเว้นอะตอมของธาตุไฮโดรเจน ที่ไม่มีนิวตรอน) ซึ่งมีจำนวนแตกต่างกันไป เลขที่แสดงจ้านวนโปรตอนในนิวเคลียสของอะตอม เรียกว่าเลขอะตอม (atomic number, Z) เลขอะตอมจะเป็นค่าเฉพาะของธาตุ ธาตุชนิดเดียวกันจะมีเลขอะตอมเท่ากันเสมอ ซึ่งที่สภาวะปกติจะมีจำนวนโปรตอนและอิเล็กตรอนเท่ากัน ส่วนเลขที่แสดงจำนวนผลบวกของโปรตอนและจำนวนนิวตรอน เราเรียกว่า เลขมวล (mass number, A) ซึ่งในนิวเคลียสของอะตอม เลขมวลจะมีค่าใกล้เคียงกับเลขของอะตอม โดยผลต่างของเลขมวลกับเลขของอะตอมจะเท่ากับจำนวนนิวตรอนโดยสามารถเขียนสัญลักษณ์นิวเคลียร์ได้ คือ
                  เลขอะตอม คือ จำนวนโปรตอนในนิวเคลียสของแต่ละอะตอมของธาตุ ในอะตอมที่เป็นกลางจะมีจำนวนโปรตอนเท่ากับจ้านวนอิเล็กตรอน ดังนั้นเลขเชิงอะตอมจึงบอกจำนวนของอิเล็กตรอนของธาตุได้ด้วย เนื่องจากอะตอมของธาตุชนิดเดียวกันมีค่าเลขเชิงอะตอมเท่ากันเสมอ เลขเชิงอะตอมจึงเป็นเอกลักษณ์ของธาตุชนิดเดียวกัน เช่น เลขเชิงอะตอมของฟอสฟอรัสเท่ากับ 15 นั้นคือทุกๆ อะตอมที่เป็นกลางของฟอสฟอรัสจะมี 15 โปรตอน และมี 15 อิเล็กตรอน และกล่าวได้ว่าอะตอมใดๆ ในจักรวาลถ้ามี 15 โปรตอนแล้ว จะเรียกว่า “ฟอสฟอรัส” ทั้งสิ้น
                  เลขมวล คือ ผลรวมของนิวตรอนและโปรตอนที่มีในนิวเคลียสของอะตอมของธาตุ นิวเคลียสในอะตอมอื่น ๆ ทั้งหมดจะมีทั้งโปรตอนและนิวตรอนอยู่ โดยทั่วไปแล้วเลขมวลหาได้ดังนี้
                                         เลขมวล = จำนวนโปรตอน + จำนวนนิวตรอน
                                                       = เลขอะตอม + จำนวนนิวตรอน
              จำนวนนิวตรอนในอะตอม = เลขมวล – เลขอะตอม
เช่น  2311Na ธาตุโซเดียม มีจำนวนโปรตอน (Z) = 11  มีจำนวนนิวตรอน = A – Z = 23 – 11 = 12 มีจำนวนอิเล็กตรอน  = 11 (เท่ากับจำนวนโปรตอน)
                  ไอโซโทป (isotope) หมายถึง อะตอมของธาตุชนิดเดียวกันที่มีเลขอะตอม (Z) เท่ากัน แต่เลขมวล (A) ไม่เท่ากัน ตัวอย่างเช่น อะตอมของไฮโดรเจนมีเลขมวลสามชนิดโดยแตกต่างกันที่จำนวนนิวตรอน ได้แก่
                 ไฮโดรเจน (Hydrogen) มี 1 โปรตอนและไม่มีนิวตรอน มีสัญลักษณ์ 11H
                 ดิวทีเรียม (Deuterium) มี 1 โปรตอนและมี 1 นิวตรอน มีสัญลักษณ์ 21H
                 ทริเทียม (Tritium)        มี 1 โปรตอนและมี 2 นิวตรอน มีสัญลักษณ์ 31H
                 สมบัติทางเคมีของธาตุถูกกำหนดโดยจำนวนโปรตอนและอิเล็กตรอนในอะตอม นิวตรอนไม่มีส่วนเกี่ยวข้องในการเปลี่ยนแปลงทางเคมีตามปกติ ดังนั้นไอโซโทปของธาตุเดียวกันจึงมีสมบัติทางเคมีเหมือนกันเกิดสารประกอบประเภทเดียวกันและมีความไวต่อปฏิกิริยาเคมี
                  ไอโซโทน (isotone) หมายถึง อะตอมของธาตุต่างชนิดกันที่มีจำนวนนิวตรอนเท่ากัน แต่จำนวนโปรตอน เลขอะตอมและเลขมวลไม่เท่ากัน เช่น  3919K  4020Ca มีนิวตรอนเท่ากัน คือ  20
                  ไอโซบาร์ (isobar) หมายถึง อะตอมของธาตุต่างชนิดกันที่มีเลขมวลเท่ากันแต่เลขอะตอมต่างกัน เช่น 146C  147N

2.3 การจัดเรียงอิเล็กตรอนในอะตอม
         2.3.1 จำนวนอิเล็กตรอนในเเต่ละระดับพลังงาน
                    อิเล็กตรอนในอะตอมที่อยู่ ณ ระดับพลังงาน (energy levels หรือ shell) จะมีพลังงานจำนวนหนึ่ง ส้าหรับอิเล็กตรอนที่อยู่ใกล้นิวเคลียสมากที่สุดจะมีพลังงานน้อยกว่าพวกที่อยู่ไกลออกไป ยิ่งอยู่ไกลมากยิ่งมีพลังงานมากขึ้น โดยกำหนดระดับพลังงานหลักให้เป็น n ซึ่ง n เป็นจ้านวนเต็มคือ 1, 2, … หรือตัวอักษรเรียงกันดังนี้ คือ K, L, M, N, O, P, Q ตามล้าดับ เมื่อ n = 1 จะเป็นระดับพลังงานต่ำสุด หมายความว่า จะต้องใช้พลังงานมากที่สุดที่จะดึงเอาอิเล็กตรอนนั้นออกจากอะตอมได้ จำนวนอิเล็กตรอนที่จะมีได้ในแต่ละระดับพลังงานหลักต้องเท่ากับหรือไม่เกิน 2n2 และจำนวนอิเล็กตรอนในระดับนอกสุดจะต้องไม่เกิน 8 เช่น

- ระดับพลังงานที่หนึ่ง n = 1 (shell K) ปริมาณอิเล็กตรอนที่ควรมีอยู่ = 2(1)2 = 2
ระดับพลังงานที่สอง (n = 2) ปริมาณอิเล็กตรอนสูงสุดที่ควรมีได้ = 2(2)2 = 8
ระดับพลังงานที่สาม (n = 3) ปริมาณอิเล็กตรอนสูงสุดที่ควรมีได้ = 2(3)2 = 18 
ระดับพลังงานที่สี่    (n = 4) ปริมาณอิเล็กตรอนสูงสุดที่ควรมีได้ = 2(4)2 = 32                                - ระดับพลังงานที่ห้า  (n = 5) ปริมาณอิเล็กตรอนสูงสุดที่ควรมีได้ = 2(5)2 = 50
ระดับพลังงานที่หก  (n = 6) ปริมาณอิเล็กตรอนสูงสุดที่ควรมีได้ = 2(6)2 = 72              
- ระดับพลังงานที่เจ็ด (n = 7) ปริมาณอิเล็กตรอนสูงสุดที่ควรมีได้ = 2(7)2 = 98

         2.3.2 ระดับพลังงานหลัก เเละระดับพลังงานย่อย
                  จากตารางได้ข้อสังเกตว่า1. ระดับพลังงานหลัก n = 1 มีเฉพาะระดับพลังงานย่อย s
1. ระดับพลังงานหลัก n = 2 มีเฉพาะระดับพลังงานย่อย s, p    
ระดับพลังงานหลัก n = 3 มีเฉพาะระดับพลังงานย่อย s, p, d    
ระดับพลังงานหลัก n = 4 มีเฉพาะระดับพลังงานย่อย s, p, d, f
2. ในระดับพลังงานย่อยจะมีตัวเลขข้างหน้าบอกระดับพลังงานหลัก ส่วนตัวเลขยกกำลังมุมขวาบนบอก จำนวนอิเล็กตรอนที่บรรจุได้สูงสุด เช่น     
4p6 หมายความว่าระดับพลังงานหลัก n = 4 ในระดับพลังงานย่อย p-orbital มี 6 อิเล็กตรอน
4d5 หมายความว่าระดับพลังงานหลัก n = 4 ในระดับพลังงานย่อย d-orbital มี 5 อิเล็กตรอน
      
         2.3.3 ออร์บิทัล
                 จากการศึกษาสเปกตรัมของธาตุต่างๆ พบว่าในระดับพลังงานหลัก (n) ยังประกอบด้วยระดับพลังงานย่อยหรือเรียกว่า ซับเซลล์ (sub-levels หรือ sub-shells) โดยก้าหนดเป็นสัญลักษณ์คือ s p d และ f ซึ่งในแต่ละระดับพลังงานย่อยจะมีอิเล็กตรอนได้ไม่เท่ากันและมีพลังงานไม่เท่ากัน กล่าวคือ ระดับพลังงานย่อย s มีพลังงานต่ำกว่า p ต่ำกว่า d ต่ำกว่า f ตามล้าดับ ในระดับพลังงานย่อยยังประกอบด้วยออร์บิทัล (orbital) ซึ่งในแต่ละออร์บิทัลมีอิเล็กตรอนได้ไม่เกิน 2 อิเล็กตรอน ดังนี้
1.ระดับพลังงานย่อย s มีอิเล็กตรอนได้ไม่เกิน 2 อิเล็กตรอน มี 1 ออร์บิทัล
2.ระดับพลังงานย่อย p มีอิเล็กตรอนได้ไม่เกิน 6 อิเล็กตรอน มี 3 ออร์บิทัล
3.ระดับพลังงานย่อย d มีอิเล็กตรอนได้ไม่เกิน 10 อิเล็กตรอน มี 5 ออร์บิทัล
4.ระดับพลังงานย่อย f มีอิเล็กตรอนได้ไม่เกิน 14 อิเล็กตรอน มี 7 ออร์บิทัล                                  
         2.3.4 หลักการจัดเรียงอิเล็กตรอนในอะตอม                   
          ภายในระดับพลังงานหลักอันเดียวกันจะประกอบด้วยพลังงานย่อยเรียงล้าดับจากพลังงานต่้าไปสูง คือ จาก s ไป p d และ f เช่น 3p สูงกว่า 3s ซึ่งเมื่อนำมาเรียงลำดับกันแล้ว พบว่ามีเฉพาะ 2 ระดับพลังงานแรกคือ n = 1 และ n = 2 เท่านั้น ที่มีพลังงานเรียงลำดับกัน แต่พอขึ้นระดับพลังงาน n = 3 เริ่มมีการซ้อนเกยกันของระดับพลังงานย่อย ดังรูป
                   จากการศึกษาพบว่ากรณีของอะตอมที่มีหลายอิเล็กตรอนนั้นระดับพลังงานของ 3d จะใกล้กับ 4s มาก และพบว่า ถ้าบรรจุอิเล็กตรอนใน 4s ก่อน 3d พลังงานรวมของอะตอมจะต่ำ และอะตอมจะเสถียรกว่า ดังนั้นในการจัดเรียงอิเล็กตรอนในออร์บิทัลแบบที่เสถียรที่สุด คือการจัดตามระดับพลังงานที่ต่ำที่สุดก่อนทั้งในระดับพลังงานหลักและย่อย ซึ่งวิธีการจัดอิเล็กตรอนสามารถพิจารณาตามลูกศรในรูปที่ 1.8 โดยเรียงลำดับได้เป็น 1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 7s 5f 6d 7p

                  ในการจัดอิเล็กตรอนอาจเขียนเป็นแผนภาพออร์บิทัลซึ่งแสดงสปินของอิเล็กตรอนด้วย ดังตัวอย่าง C มี z = 6 มีโครงแบบอิเล็กตรอนเป็น 1s2 2s2 2p2 
                  ในการบรรจุอิเล็กตรอนหรือการจัดเรียงอิเล็กตรอนลงในออร์บิทัลจะต้องยึดหลักในการบรรจุอิเล็กตรอนของอะตอมหนึ่งๆ ลงในออร์บิทัลที่เหมาะสมตามหลักดังต่อไปนี้__________
                  1) หลักของเพาลี (Pauli exclusion principle) กล่าวว่า “ไม่มีอิเล็กตรอนคู่หนึ่งคู่ใดในอะตอมที่มีเลขควอนตัมทั้งสี่เหมือนกันทุกประการ” นั่นคืออิเล็กตรอนคู่หนึ่งในออร์บิทัลจะมีค่า n, ℓ, mℓ เหมือนกันได้ แต่ต่างกันที่สปิน_________                
                   2) หลักของเอาฟ์บาว (Aufbau principle) มีวิธีการดังนี้____________๘
                      2.1) สัญลักษณ์วงกลม O,  หรือ _ แทน ออร์บิทัล
                            ลูกศร ↑↓ แทน อิเล็กตรอน 1 ตัว ที่สปิน ขึ้น-ลง
                            ↑↓ เรียกว่า อิเล็กตรอนคู่ (paired electron)
                            ↑  เรียกว่าอิเล็กตรอนเดี่ยว (single electron)
                      2.2) บรรจุอิเล็กตรอนเข้าไปในออร์บิทัลที่มีระดับพลังงานต่ำจนครบจำนวนก่อน
                   3) กฎของฮุนด์ (Hund’s rule) กล่าวว่า “การบรรจุอิเล็กตรอนในออร์บิทัลที่มีระดับพลังงานเท่ากัน (degenerate orbital) จะบรรจุในลักษณะที่ท้าให้มีอิเล็กตรอนเดี่ยวมากที่สุดเท่าที่จะมากได้” ออร์บิทัลที่มีระดับพลังงานมากกว่า 1 เช่น ออรฺบิทัล p และ d เป็นต้น

2.4 ตารางธาตุเเละสมบัติธาตุหมู่หลัก
        2.4.1 วิวัฒนาการของการสร้างตารางธาตุ        
         ตารางธาตุ หมายถึง ตารางที่นักวิทยาศาสตร์สร้างขึ้นมา เพื่อแบ่งธาตุที่มีสมบัติเหมือนกันออกเป็นหมวดหมู่  เพื่อให้ง่ายแก่การศึกษา  โดยแบ่งธาตุทั้งหมดออกเป็นหมู่และคาบ        
         - ธาตุที่อยู่ในแนวดิ่งเดียวกัน เรียกว่า อยู่ใน หมู่ เดียวกัน
        
         - ธาตุที่อยู่ในแนวนอนเดียวกัน เรียกว่า อยู่ใน คาบ เดียวกัน
      
         ในระหว่างปี พ.ศ. 2346  ถึง 2456  มีธาตุต่าง ๆที่พบในธรรมชาติประมาณ  63  ธาตุ  ซึ่งนักวิทยาศาสตร์ได้พยายามจัดธาตุเหล่านี้ให้เป็นหมวดหมู่หรือเป็นตารางธาตุโดยในช่วงแรก ๆ นั้นแบ่งธาตุออกเป็นหมวดหมู่โดยอาศัยสมบัติของธาตุ   ทั้งนี้ได้จากการสังเกตพบความคล้ายคลึงกันของสมบัติของธาตุเป็นกลุ่ม ๆ  ทำให้นำมาจัดเป็นตารางธาตุได้  เช่นแบ่งกลุ่มโดยอาศัยสมบัติเกี่ยวกับโลหะ-อโลหะ  โดยอาศัยสมบัติของความเป็นกรด-เบสของธาตุ เป็นต้น  ต่อมาเมื่อหามวลอะตอมของธาตุได้  จึงใช้มวลอะตอมมาประกอบในการจัดตารางธาตุ  จนในปัจจุบันจัดตารางธาตุโดยอาศัยการจัดเรียงอิเล็กตรอน
      
          
1. ตารางธาตุของเดอเบอไรเนอร์                      
              การจัดตารางธาตุนั้นเริ่มขึ้นตั้งแต่ปี พ.ศ.  2360 (ค.ศ. 1817) โดย โยฮันน์  เดอเบอไรเนอร์ (Johaun  Dobereiner)  นักเคมีชาวเยอรมัน  ได้นำธาตุต่าง ๆ ที่พบในขณะนั้นมาจัดเรียงเป็นตารางธาตุ โดยนำธาตุต่าง ๆ ที่มีสมบัติคล้ายคลึงกันมาจัดไว้ในหมู่เดียวกัน  หมู่ละ  3  ธาตุ  เรียงตามมวลอะตอมจากน้อยไปมากในแต่ละหมู่  มวลอะตอมของธาตุที่อยู่กลางจะเป็นค่าเฉลี่ยของมวลอะตอมของธาตุที่เหลืออีก  2  อะตอม เรียกว่า กฎชุดสาม (law of  triads หรือ Dobereine’s law  of  triads)



        2. ตารางธาตุของนิวแลนด์
            ในปี พ.ศ. 2407 (ค.ศ. 1864) จอห์น  นิวแลนด์  (John  Newlands)  นักเคมีชาวอังกฤษได้พบว่าเมื่อนำธาตุต่าง ๆ มาเรียงลำดับตามมวลอะตอมจากน้อยไปหามาก ให้เป็นแถวตามแนวนอน สมบัติของธาตุจะมีลักษณะคล้ายกันเป็นช่วง ๆ ซึ่งลักษณะดังกล่าวเกิดขึ้นทุก ๆ ของธาตุที่  8 เช่น  ถ้าเริ่มต้นจากธาตุ  Li  แล้วเรียงลำดับมวลอะตอมไปถึงธาตุที่  8 จะตรงกับ  Na  ซึ่ง  Li  และ Na  มีสมบัติต่าง ๆ คล้ายคลึงกัน
        3. ตารางธาตุของเมนเดเลเอฟ                    
            ในระหว่างปี พ.ศ. 2412 - 2413 (ค.ศ. 1269 - 1270)  ยูลิอุส  ไมเออร์ (Julius  Meyer)  นัฟวิทยาศาสตร์ชาวเยอรมัน และดิมิทรี  เมนเดเลเอฟ (Dimitri  Mendelejev)  นักวิทยาศาสตร์ชาวรัสเซียได้พบในเวลาใกล้เคียงกันว่าสมบัติต่าง ๆ ของธาตุมีส่วนสัมพันธ์กับมวลอะตอมของธาตุกล่าวคือ  “ถ้าเรียงลำดับธาตุตามมวลอะตอมจากน้อยไปหามาก  จะพบว่าธาตุ ๆ  ต่าง จะมีสมบัติคล้ายคลึงกันเป็นช่วง ๆ ”   ซึ่งเมเดเลเอฟได้ตั้งเป็นกฎเรียกว่า  “กฎพิริออดิก”  หรือกฎตารางธาตุ  (Periodic  law)  และพิมพ์เผยแพร่ในปี พ.ศ. 2412  ก่อนที่ไมเออร์จะพิมพ์เผยแพร่ครั้งหนึ่ง  ดังนั้นเพื่อเป็นเกียรติแก่เมนเดเลเอฟ  จึงเรียกตารางนี้ว่า “ตารางพีริออดิกของเมนเดเลเอฟ”  หรือตารางธาตุของเมนเดเลเอฟ (Mendelejev’ s  periodic  table)
            เกณฑ์ที่สำคัญที่เมนเดเลเอฟใช้ คือ จัดธาตุที่มีสมบัติคล้ายคลึงกันที่ปรากฏซ้ำกันเป็นช่วง ๆ ให้อยู่ในหมู่หรือในแนวตั้งเดียวกัน  และพยายามเรียงลำดับมวลอะตอมจากน้อยไปหามาก  ในกรณีที่เรียงตามมวลอะตอมแล้วสมบัติของธาตุไม่สอดคล้องกัน  ก็พยายามจัดให้เข้าหมู่โดยปล่อยให้ช่องว่างเว้นไว้ในตารางซึ่งเมนเดเลเอฟคิดว่า  ช่องว่างเหล่านั้นน่าจะเป็นตำแหน่งของธาตุซึ่งยังไม่มีการค้นพบในขณะนั้น  ในการจัดตารางธาตุนอกจากจะใช้มวลอะตอมแล้ว ยังใช้สมบัติทางเคมีและทางกายภาพของสารประกอบอื่น ๆ นอกเหนือจากสารประกอบคลอไรด์ และออกไซด์มาประกอบการพิจารณาด้วย

        ช่องว่างที่เว้นไว้คือตำแหน่งของธาตุที่ยังไม่พบในสมัยนั้น  เนื่องจากตำแหน่งของธาตุในตารางธาตุสัมพันธ์กับสมบัติของธาตุ  ทำให้เมนเดเลเอฟสามารถทำนายสมบัติของธาตุไว้ล่วงหน้าได้ด้วย โดยการศึกษาสมบัติเกี่ยวกับจุดหลอมเหลว  จุดเดือด  ความถ่วงจำเพาะ  และความร้อนจำเพาะ รวมทั้งสมบัติเกี่ยวกับสารประกอบคลอไรด์ และออกไซด์
        4. ตารางธาตุของเฮนรี โมสลีย์                    
            เฮนรี  โมสลีย์  (Henry  Moseley)  นักวิทยาศาสตร์ชาวอังกฤษ  ได้แก้ไขตารางธาตุของเมนเดเลเอฟให้ถูกต้องขึ้น  โดยการพบว่าเลขอะตอม หรือจำนวนโปรตอนในนิวเคลียสของธาตุ  มีความสัมพันธ์กับสมบัติของธาตุมากกว่ามวลอะตอม  ทำให้สอดคล้องกับกฎพีริออดิกมากกว่า  สามารถสร้างตารางธาตุได้โดยไม่ต้องสลับที่ธาตุบางธาตุเหมือนกรณีการจัดเรียงตามมวลอะตอม
           ประมาณปี พ.ศ. 2456 (ค.ศ. 1913)  โมสลีย์จึงเสนอตารางธาตุใหม่โดยเรียงตามเลขอะตอมจากน้อยไปหามาก  และจัดธาตุที่มีสมบัติคล้ายคลึงกันให้อยู่ในหมู่เดียวกัน  และกำหนดกฎตารางธาตุขึ้นใหม่เป็น “สมบัติต่าง ๆ ของธาตุในตารางธาตุขึ้นอยู่กับเลขอะตอมของธาตุ”
        2.4.2 กลุ่มของธาตุในตารางธาตุ            
                  ตารางธาตุแบ่งธาตุในแนวตั้งออกเป็น  18  แถวหรือ  18  หมู่  โดยธาตุทั้งหมด  18  แถว  แบ่งเป็น  2  กลุ่มใหญ่ ๆ  คือกลุ่ม  A  และ  B  กลุ่ม  A  มี  8  หมู่ คือหมู่  IA   ถึง  VIIIA  ส่วนกลุ่ม  B  ซึ่งอยู่ระหว่างหมู่  IIA   และ  IIIA  มี  8  หมู่เช่นเดียวกัน คือ หมู่  IB  ถึง   VIIIB   (แต่มี  10  แนวตั้ง)  เรียกธาตุกลุ่ม  B  ว่า  ธาตุทรานซิชัน(Transition Elements)
ธาตุในแต่ละหมู่  ของกลุ่ม  A  ถ้ามีสมบัติคล้ายกันจะมีชื่อเรียกเฉพาะหมู่ เช่น
*      ธาตุหมู่  IA  เรียกว่า  โลหะอัลคาไล (alkali  metal)  ได้แก่  Li  ,  Na  ,  K , Rb , Cs , Fr
*      ธาตุหมู่ IIA เรียกว่า โลหะอัลคาไลน์เอิร์ท(alkaline  earth)ได้แก่ Be  Mg  Ca  Sr  Ba  Ra
*      ธาตุหมู่ VIIA เรียกว่า ธาตุเฮโลเจน (halogen)  ได้แก่   F  Cl  Br  I  At
*      ธาตุหมู่ที่ VIIIA  เรียกว่า ก๊าซเฉื่อย (Inert  gas)  ได้แก่   He  Ne  Ar  Kr  Xe  Rn
สำหรับการแบ่งธาตุเป็นคาบ  ธาตุทั้งหมดในตารางธาตุแบ่งเป็น  7  คาบ  ซึ่งในแต่ละคาบอาจจะมีจำนวนธาตุไม่เท่ากัน  เช่น
สำหรับคาบต่าง ๆ ในตารางธาตุแบ่งเป็น  7  คาบดังนี้
*      คาบที่ 1  มี  2  ธาตุ คือ H ,  He
*      คาบที่ 2  มี  8  ธาตุ  คือ  ตั้งแต่    Li   ถึง   Ne
*      คาบที่ 3  มี  8  ธาตุ  คือ  ตั้งแต่    Na   ถึง   Ar
*      คาบที่ 4  มี  18  ธาตุ  คือ  ตั้งแต่    K   ถึง   Kr
*      คาบที่ 5  มี  18  ธาตุ  คือ  ตั้งแต่    Rb   ถึง   Xe
*      คาบที่ 6  มี  32  ธาตุ  คือ  ตั้งแต่    Cs   ถึง   Rn
*      คาบที่ 7  มี  19  ธาตุ  คือ  ตั้งแต่    Fr   ถึง   Ha
รวมทั้งหมด  105  ธาตุ  เป็นก๊าซ  11  ธาตุ  คือ  H  ,  N  ,  O  , F ,  Cl ,  He ,  Ne ,  Ar ,
Kr  ,  Xe   และ  Rn  เป็นของเหลว   5  ธาตุ  คือ   Cs  ,  Fr , Hg  ,  Ga  และ  Br  ที่เหลือเป็นของแข็ง
สำหรับ  2  แถวล่างเลขอะตอม    57 - 70  และ  89 - 102  เป็นธาตุกลุ่มย่อยที่แยกมาจากหมู่  IIIB  ในคาบที่  6  และ  7  เรียกธาตุในกลุ่มย่อยนี้รวม ๆ ว่า กลุ่มธาตุเลนทาไนด์ และ กลุ่มธาตุแอกทิไนด์
นอกจากนี้เมื่อพิจารณาธาตุหมู่  IIIA  ไปทางขวามือ  จะพบเส้นหนักหรือเส้นทึบเป็นแบบขั้นบันได  เส้นหนักนี้จะเป็นเส้นแบ่งกลุ่มธาตุโลหะและอโลหะ  กล่าวคือ ธาตุทางขวาของเส้นขั้นบันไดจะเป็นอโลหะ  ธาตุทางซ้ายมือของเส้นขั้นบันไดจะเป็นโลหะ  ธาตุที่อยู่ชิดกับเส้นขั้นบันได เป็นธาตุกึ่งโลหะ ซึ่งมีทั้งสมบัติของโลหะและอโลหะ  เช่น  ธาตุ  B , Si ,Ge ,As , Sb , Te
การตั้งชื่อธาตุที่ค้นพบใหม่
จากตารางธาตุในรูปที่  1.23  จะพบว่ามีธาตุอยู่  118  ธาตุ  ซึ่งยังมีการค้นพบธาตุใหม่ ๆ  เพิ่มขึ้นอีกหลายธาตุ  แต่ยังไม่ได้กำหนดสัญลักษณ์ที่แน่นอนไว้ในตารางธาตุ  ธาตุบางธาตุถูกค้นพบโดยนักวิทยาศาสตร์หลายคณะ  ทำให้มีชื่อเรียกและสัญลักษณ์ต่างกัน
เช่น  ธาตุที่  104  ค้นพบโดยคณะนักวิทยาศาสตร์  2  คณะ  คือ คณะของนักวิทยาศาสตร์สหรัฐอเมริกา ซึ่งเรียกชื่อว่า  รัทเทอร์ฟอร์เดียม (Ratherfordium)  และใช้สัญลักษณ์  Rf  ในขณะที่คณะนักวิทยาศาสตร์สหภาพโซเวียตเรียกชื่อว่าเคอร์ซาโตเวียม(Kurchatovium) ใช้สัญลักษณ์  Ku
ธาตุที่  105 ค้นพบโดยคณะนักวิทยาศาสตร์   2  คณะเช่นเดียวกัน คือคณะนักวิทยาศาสตร์สหรัฐอเมริกาเรียกชื่อว่า  ฮาห์เนียม (Hahnium)  และใช้สัญลักษณ์  Ha  ในขณะที่นักวิทยาศาสตร์สหภาพโซเวียตใช้ชื่อว่า  นิลส์บอห์เรียม (Neilbohrium)  และใช้สัญลักษณ์เป็น  Ns
การที่คณะนักวิทยาศาสตร์ต่างคณะตั้งชื่อแตกต่างกัน ทำให้เกิดความสับสน  International  Union  of  Pure  and  Applied  Chemistry  (IUPAC)  จึงได้กำหนดระบบการตั้งชื่อขึ้นใหม่  โดยใช้กับชื่อธาตุที่มีเลขอะตอมเกิน  100  ขึ้นไป  ทั้งนี้ให้ตั้งชื่อธาตุโดยระบุเลขอะตอมเป็นภาษาละติน  แล้วลงท้ายด้วย   ium  ระบบการนับเลขในภาษาละตินเป็นดังนี้
0   =   nil  (นิล)           1   =   un     (อุน)
2   =   bi   (ไบ)           3   =   tri     (ไตร)
4   =   quad  (ควอด)       5   =  pent   (เพนท์)
6   =   hex  (เฮกซ์)         7   =   sept  (เซปท์)
8   =   oct (ออกตฺ)         9   =  enn  (เอนน์)
เช่น  - ธาตุที่  104  ตามระบบ  IUPAC   อ่านว่า  อุนนิลควอเดียม (Unnilquadium)  สัญลักษณ์  Unq
- ธาตุที่  105  ตามระบบ  IUPAC   อ่านว่า  อุนนิลเพนเทียม (Unnilpentium)   สัญลักษณ์  Unp
การจัดตารางธาตุเป็นหมู่เป็นคาบ ทำให้ศึกษาสมบัติต่าง ๆ ของธาตุได้ง่ายขึ้น สามารถทำนายสมบัติบางประการของธาตุบางธาตุได้  กล่าวคือธาตุที่อยู่ในหมู่เดียวกันจะมีสมบัติต่าง ๆ  คล้าย ๆ กัน และธาตุที่อยู่ในคาบเดียวกัน  จะมีแนวโน้มของการเปลี่ยนแปลงสมบัติต่าง ๆ  ต่อเนื่องกันไป  ซึ่งจะกล่าวถึงรายละเอียดต่อไป

        2.4.3 ขนาดอะตอม
                ขนาดอะตอมหาได้จากเทคนิคทาง x-ray diffraction และ microwave spectroscopy ถ้าอะตอมเรียงตัวอย่างมีระเบียบแบบชิดกันมากที่สุด ขนาดของอะตอมจะหาได้จากความสัมพันธ์ ดังนี้
ขนาดของ  1  อะตอม   = 
                   จากแบบจำลองอะตอมแบบกลุ่มหมอก อะตอมมีขอบเขตที่ไม่แน่นอน ระยะระหว่างนิวเคลียสถึงผิวอะตอมมีค่าไม่คงที่ ทำให้หาขนาดของอะตอมที่แท้จริงไม่ได้ จากแบบจำลองของอะตอมตามทฤษฎีของโบร์ อิเล็กตรอนในไฮโดรเจนอะตอมอาจมีพลังงานได้หลายค่า ขนาดอะตอมของไฮโดรเจนจึงขึ้นอยู่กับว่าอิเล็กตรอนอยู่ในระดับพลังงานใด ถ้าอยู่ในระดับพลังงานสูง จะอยู่ห่างจากนิวเคลียสมาก ขนาดอะตอมจะใหญ่ และถ้าอยู่ในระดับพลังงานต่ำ จะอยู่ใกล้นิวเคลียส ขนาดอะตอมจะเล็ก ดังนั้นจึงทำให้หาขนาดของอะตอมที่แท้จริงไม่ได้
        2.4.4 ขนาดไอออน
                
อะตอมซึ่งมีจำนวนโปรตอนเท่ากับอิเล็กตรอน เมื่อรับอิเล็กตรอนเพิ่มเข้ามาหรือเสียอิเล็กตรอนออกไปอะตอมจะกลายเป็นไอออน นักเรียนคิดว่าขนาดของไอออนกับขนาดอะตอมของธาตุเดียวกันจะแตกต่างกันหรือไม่การบอกขนาดของไอออนทำได้เช่นเดียวกับการบอกขนาดอะตอม กล่าวคือจะบอกเป็นค่ารัศมีไอออน ซึ่งพิจารณาจากระยะระหว่างนิวเคลียสของไอออนคู่หนึ่งๆ ที่มีแรงยึดเหนี่ยวซึ่งกันและกันในโครงผนึก ตัวอย่างรัศมีไอออนของ \displaystyle Mg^{2 + } และ \displaystyle O^{2 - } ในสารประกอบ  MgO  แสดงดังรูป

- ขนาดของ Mg กับ \displaystyle Mg^{2 + } และ O กับ \displaystyle O^{2 - } แตกต่างกันอย่างไร เพราะเหตุใด
เมื่อโลหะทำปฏิกิริยากับอโลหะ อะตอมของโลหะจะเสียเวเลนซ์อิเล็กตรอนกลายเป็นไอออนบวก จำนวนอิเล็กตรอนในอะตอมจึงลดลง ทำให้แรงผลักระหว่างอิเล็กตรอนลดลงด้วย หรือกล่าวอีกนัยหนึ่งได้ว่าแรงดึงดูดระหว่างประจุในนิวเคลียสกับอิเล็กตรอนจะเพิ่มมากขึ้นไอออนบวกจึงมีขนาดเล็กกว่าอะตอมเดิม ส่วนอะตอมของอโลหะนั้นส่วนใหญ่จะรับอิเล็กตรอนเพิ่มเข้ามาและเกิดเป็นไอออนลบ เนื่องจากมีการเพิ่มขึ้นของจำนวนอิเล็กตรอนจึงทำให้แรงผลักระหว่างอิเล็กตรอนที่เคลื่อนที่อยู่รอบนิวเคลียสมีค่าสูงขึ้น ขอบเขตของกลุ่มหมอกอิเล็กตรอนจะขยายออกไปจากเดิม ไอออนลบจึงมีมีขนาดใหญ่กว่าอะตอมเดิม ตัวอย่างขนาดอะตอมกับขนาดไอออนของธาตุแสดงดังรูป
รัศมีอะตอมและรัศมีไอออน (พิโกเมตร) ของธาตุบางชนิด
-  ขนาดไอออนตามหมู่มีแนวโน้มอย่างไร
-  \displaystyle Na^ + กับ \displaystyle F^ - มีการจัดอิเล็กตรอนและขนาดไอออนแตกต่างกันหรือไม่ อย่างไร
-  \displaystyle Na^ + \displaystyle Mg^{2 + } และ \displaystyle Al^{3 + } มีขนาดไอออนแตกต่างกันอย่างไร
จากรูป  เมื่อพิจารณาแนวโน้มของรัศมีอะตอมและรัศมีไอออนตามหมู่ จะพบว่าหมู่ IA   IIA    IIIA และ VIIA   มีแนวโน้มเช่นเดียวกันคืออะตอมและไอออนมีขนาดเพิ่มขึ้นจากบนลงล่าง รัศมีไอออนบวกจะมีค่าน้อยกว่ารัศมีอะตอมแต่รัศมีไอออนลบจะมีค่ามากกว่ารัศมีอะตอมการเปรียบเทียบขนาดไอออนที่มีความหมาย จะเปรียบเทียบระหว่างไอออนที่มีการจัดอิเล็กตรอนเหมือนกันหรือมีจำนวนอิเล็กตรอนเท่ากัน เช่น  \displaystyle Na^ + กับ  \displaystyle F^ - ซึ่งมี 10 อิเล็กตรอนเท่ากันและจัดอิเล็กตรอนเป็น  พบว่า   \displaystyle Na^ + มีขนาดไอออนเล็กกว่า  \displaystyle F^ - ทั้งนี้เพราะ  \displaystyle Na^ + มีประจุในนิวเคลียสมากกว่า  \displaystyle F^ - ส่วนไอออนบวกที่จัดอิเล็กตรอนเหมือนกัน ไอออนบวกที่มีประจุมากจะมีขนาดเล็กกว่าไอออนบวกที่มีประจุน้อย นั่นคือไอออน 3+ จะมีขนาดเล็กกว่า 2+ และ 1+ ตามลำดับ
        2.4.5 พลังงานไอออไนเซซัน
                   พลังงานไอออไนเซชัน (ionization energy : IE)  หมายถึงพลังงานที่น้อยที่สุดที่ใช้เพื่อทำให้อิเล็กตรอนหลุดออกจากอะตอมในสถานะแก๊สกลายเป็นไอออนในสถานะแก๊ส  เช่น  การทำให้โฮโดรเจนอะตอมกลายเป็นไฮโดรเจนไอออนในสถานะแก๊ส  เขียนแสดงได้ดังนี้
H(g)    -------------->   H+(g)   +   e– IE  =  1318 kJ/mol
ไฮโดรเจนมีเพียง  1  อิเล็กตรอน  จึงมีค่าพลังงานไอออไนเซชันเพียงค่าเดียว  ถ้าเป็นธาตุที่มีหลายอิเล็กตรอนก็จะมรพลังงานไอออไนเซชันหลายค่า  พลังงานน้อยที่สุดที่ทำให้อิเล็กตรอนตัวแรกหลุดออกตากอะตอมในสถานะแก๊สเรียกว่า “พลังงานไอออไนเซชันลำดับที่ 1”  เขียนย่อเป็น IE1พลังงานที่ทำให้อิเล็กตรอนตัวต่อ ๆ ไปหลุดออกจากอะตอมในสถานะแก๊สก็จะเรียกว่า  พลังงานไอออไนเซชันลำดับที่  2 , 3 , . . .  ตามลำดับ  และเขียนย่อเป็น  IE2 , IE3 , . . .  ตามลำดับ  เช่น  ธาตุโบรอนมี  5  อิเล็กตรอน  ก็จะมีพลังงานไอออไนเซชัน  5  ค่า  ดังนี้
B(g)    --------->          B+(g)   +   e–               IE1 =  807 kJ/mol
B+(g)     -------->         B2+(g)   +   e–            IE2 =  2433 kJ/mol
B2+ (g)  -------->        B3+ (g)   +   e–           IE3 =  3666 kJ/mol
B3+ (g)     ----------->   B4+ (g)   +   e–           IE4 =  25033 kJ/mol
B4+ (g)   --------->        B5+ (g)   +   e–           IE5 =  32834 kJ/mol
พลังงานไอออไนเซชันกับจำนวนอิเล็กตรอนในระดับพลังงาน
ค่าพลังงานไอออไนเซชันของธาตุต่าง ๆ ในตารางธาตุใช้เป็นข้อมูลในการจัดกลุ่มอิเล็กตรอนที่อยู่รอบนิวเคลียส  ซึ่งพบความสัมพันธ์คือ  อิเล็กตรอนที่อยู่ในระดับพลังงานเดียวกัน (ชั้นเดียวกัน)  จะมีค่าพลังงานไอออไนเซชันใกล้เคียงกัน  และอิเล็กตรอนที่อยู่ต่างระดับพลังงานกัน  จะมีค่าพลังงานไอออไนเซชันแตกต่างกันมาก  ซึ่งสรุปความสัมพันธ์ถึงจำนวนอิเล็กตรอนในแต่ละระดับพลังงานจะมีจำนวนไม่เกิน 2n2
สรุปแนวโน้มพลังงานไอออไนเซชัน
1.  แนวโน้มค่าพลังงานไอออไนเซชันลำดับที่ 1 ( IE1) ตามคาบ  พบว่ามีแนวโน้มเพิ่มขึ้นตามเลขอะตอม  เนื่องจากธาตุในคาบเดียวกันมีจำนวนโปรตอนในนิวเคลียสเพิ่มขึ้นและมีขนาดอะตอมเล็กลง  แรงดึงดูดระหว่างนิวเคลียสกับเวเลนซ์อิเล็กตรอนจึงเพิ่มมากขึ้น  อิเล็กตรอนจึงหลุดออกจากอะตอมได้ยาก
2.  แนวโน้มค่าพลังงานไอออไนเซชันลำดับที่ 1 ( IE1) ตามหมู่  ปัจจัยทีมีผลคือคือขนาดอะตอมซึ่งเป็นผลมาจากระดับพลังงาน  ค่า IE1จะลดลงเมื่ออะตอมมีขนาดใหญ่ขึ้น  เพราะขนาดอะตอมที่ใหญ่ขึ้นจะมีเวเลนซ์อิเล็กตรอนที่ห่างนิวเคลียสมากขึ้น  อิเล็กตรอนจะได้รับแรงดึงดูดจากนิวเคลียสน้อย  อิเล็กตรอนจะหลุดออกจากอะตอมได้ง่าย
        2.4.6 สัมพรรคภาคอิเล็กตรอน 
                  สัมพรรคภาพอิเล็กตรอน (electron affinity)  คือ พลังงานที่อะตอมในสถานะแก๊สคายออกมาเมื่อได้รับอิเล็กตรอน
F(g) + e-  F-(g) + 328 kJ/mol
สรุปแนวโน้มสัมพรรคภาพอิเล็กตรอน
1.  เมื่อพิจารณาตามคาบ  ค่า EA  ในหมู่ IA   IIA  และ IIIA  มีค่าเป็นลบน้อยกว่าธาตุที่อยู่ทางขวามือ  แสดงว่าธาตุในหมู่ดังกล่าวมีแนวโน้มที่จะรับอิเล็กตรอนได้น้อยมาก  โดยเฉพาะธาตุในหมู่ IIA  มีค่า EA  สูงที่สุด  แสดงว่ารับอิเล็กตรอนยากที่สุด
2.  ธาตุหมู่ IVA   VA   VIA  และ VIIA  มีแนวโน้มสูงที่จะรับอิเล็กตรอน  โดยเฉพาะธาตุหมู่ VIIA  ชอบที่จะรับอิเล็กตรอนสูงที่สุด  การรับอิเล็กตรอนของธาตุในหมู่ VIIA  จะทำให้อะตอมมีการจัดเรียงอิเล็กตรอนเหมือนแก๊สเฉื่อยซึ่งมีความเสถียรมาก EA  ของแก๊สเฉื่อยจึงมีค่าเป็นบวก
        2.4.7 อิเล็กโทรเนกาติวิตี 
                    อิเล็กโทรเนกาติวิตี (electronegativity : EN)  หมายถึงค่าที่แสดงความสามารถในการดึงดูดอิเล็กตรอนของอะตอมคู่ที่เกิดพันธะที่จะรวมกันเป็นโมเลกุล  ธาตุที่มีค่าอิเล็กโทรเนกาติวิตีสูงจะมีความสามารถในการดึงดูดหรือรับอิเล็กตรอนได้ดี  ได้แก่พวกอโลหะ  ส่วนธาตุที่มีค่าอิเล็กโทรเนกาติวิตีต่ำจะดึงดูดหรือรับอิเล็กตรอนได้ไม่ดี  ได้แก่พวกโลหะ  เช่น  โมเลกุลของ  HCl  เนื่องจาก  Cl  ดึงดูดอิเล็กตรอนได้ดีกว่า H  ดังนั้น  Cl  จึงมีค่าอิเล็กโทรเนกาติวิตีสูงกว่า H  
สรุปแนวโน้มค่าอิเล็กโทรเนกาติวิตี
1.  แนวโน้มค่าอิเล็กโทรเนกาติวิตีตามคาบ
ปัจจัยที่มีผลคือเลขอะตอมหรือประจุบวกในนิวเคลียส  ธาตุที่มีประจุบวกในนิวเคลียสมากจะมีค่า EN สูง  ดังนั้นธาตุที่อยู่ในคาบเดียวกันจะมีค่า EN ดังนั้นธาตุที่อยู่ในคาบเดียวกันจะมีค่า EN เพิ่มขึ้นจากซ้ายไปขวา  เพราะประจุบวกที่นิวเคลียสจะส่งแรงดึงดูดกระทำต่ออิเล็กตรอนได้มาก
2.  แนวโน้มค่าอิเล็กโทรเนกาติวิตีตามหมู่
ปัจจัยที่มีผลคือขนาดอะตอมซึ่งเป็นผลมาจากจำนวนระดับพลังงาน  ธาตุที่มีจำนวนระดับพลังงานน้อย  หรือขนาดอะตอมเล็ก  จะมีค่า EN สูงกว่าธาตุที่มีขนาดอะตอมใหญ่ในหมู่เดียวกัน  เพราะอะตอมที่มีขนาดใหญ่นิวเคลียสจะส่งแรงดึงดูดออกไปที่เวเลนซ์อิเล็กตรอนได้น้อย  ดังนั้น  “ธาตุที่อยู่ในหมู่เดียวกันจะมีค่า EN ลดลงจากบนลงล่าง” 
2.5 ธาตุทรานซิซัน
      2.5.1  สมบัติของธาตุแทรนซิชัน 
                  นักเคมีจัดธาตุแทรนซิชันไว้ในกลุ่มของธาตุที่เป็นโลหะ แต่ไม่ได้เป็นกลุ่มเดียวกับธาตุหมู่ IA  IIA  และ IIIA  เพราะเหตุใดจึงจัดธาตุแทรนซิชันไว้อีกกลุ่มหนึ่ง เพื่อตอบคำถามนี้ให้ศึกษาสมบัติของธาตุแทรนซิชันเปรียบเทียบกับสมบัติของธาตุหมู่ IA และ IIA ที่อยู่ในคาบเดียวกันจากตาราง 
สมบัติบางประการของโพแทสเซียม แคลเซียม และธาตุแทรนซิชันในคาบที่ 4

 - ธาตุแทรนซิชันในคาบที่ 4 กับโลหะโพแทสเซียมและแคลเซียม มีสมบัติใดคล้ายกันและสมบัติใดแตกต่างกัน

                   จากตาราง 3.5  พบว่าธาตุแทรนซิชันในคาบที่  4  มีสมบัติหลายประการคล้ายกับโลหะโพแทสเซียมและแคลเซียม เช่น พลังงานไอออไนเซชันลำดับที่ 1 และอิเล็กโทรเนกาติวิตีมีค่าต่ำ แต่จุดหลอมเหลว  จุดเดือด  และความหนาแน่นมีค่าสูง และสูงมากกว่าหมู่ IA และหมู่ IIA ธาตุเทรนซิชัน จึงควรเป็นโลหะ แต่ธาตุแทรนซิชันในคาบที่ 4 มีสมบัติบางประการที่แตกต่างจากโลหะโพแทสเซียมและแคลเซียมคือ มีขนาดอะตอมใกล้เคียงกันภายในกลุ่มของธาตุแทรนซิชันเอง แต่มีขนาดเล็กกว่าโลหะโพแทสเซียมและแคลเซียม นักเรียนคิดว่าเพราะเหตุใดจึงเป็นเช่นนั้น ให้พิจารณาการจัดเรียงอิเล็กตรอนของธาตุโพแทสเซียมแคลเซียมและธาตุแทรนซิชันในคาบที่ 4

การจัดเรียงอิเล็กตรอนของธาตุโพแทสเซียม แคลเซียม และธาตุแทรนซิชันในคาบที่ 4

2.6 ธาตุกัมมันตรังสี
317cb216394d1bfc40334901
           ธาตุกัมมันตรังสี หมายถึงธาตุที่แผ่รังสีได้ เนื่องจากนิวเคลียสของอะตอมไม่เสถียร เป็นธาตุที่มีเลขอะตอมสูงกว่า 82
           กัมมันตภาพรังสี หมายถึงปรากฏการณ์ที่ธาตุแผ่รังสีได้เองอย่างต่อเนื่อง รังสีที่ได้จากการสลายตัว มี 3 ชนิด คือ รังสีแอลฟา รังสีบีตา และรังสีแกมมา
           ในนิวเคลียสของธาตุประกอบด้วยโปรตอนซึ่ง มีประจุบวกและนิวตรอนซึ่งเป็นกลางทางไฟฟ้า สัดส่วนของจำนวนโปรตอนต่อจำนวนนิวตรอนไม่เหมาะสมจนทำให้ธาตุนั้นไม่เสถียร ธาตุนั้นจึงปล่อยรังสีออกมาเพื่อปรับตัวเองให้เสถียร ซึ่งเป็นกระบวนการที่เกิดขึ้นเองตามธรรมชาติ เช่น

(ธาตุยูเรเนียม) (ธาตุทอเลียม) (อนุภาคแอลฟา)
            จะเห็นได้ว่า การแผ่รังสีจะทำให้เกิดธาตุใหม่ได้ หรืออาจเป็นธาตุเดิมแต่จำนวนโปรตอนหรือนิวตรอนอาจไม่เท่ากับธาตุเดิม และธาตุกัมมันตรังสีแต่ละธาตุ มีระยะเวลาในการสลายตัวแตกต่างกันและแผ่รังสีได้แตกต่างกัน เรียกว่า ครึ่งชีวิตของธาตุ
กัมมันตภาพรังสี (Radioactivity) เป็นคุณสมบัติของธาตุและไอโซโทปบางส่วน ที่สามารถเปลี่ยนแปลงตัวเองเป็นธาตุหรือไอโซโทปอื่น ซึ่งการเปลี่ยนแปลงนี้จะมีการปลดปล่อยหรือส่งรังสีออกมาด้วย ปรากฏการณ์นี้ได้พบครั้งแรกโดย เบคเคอเรล เมื่อปี พ.ศ. 2439 ต่อ มาได้มีการพิสูจน์ทราบว่า รังสีที่แผ่ออกมาในขบวนการสลายตัวของธาตุหรือไอโซโทปนั้นประกอบด้วย รังสีแอลฟา, รังสีเบต้า และรังสีแกมมา
รังสีแอลฟา
รังสีที่ประกอบด้วยอนุภาคแอลฟาซึ่งเป็นอนุภาคที่มีมวล 4 amu มีประจุ +2 อนุภาคชนิดนี้จะถูกกั้นไว้ด้วยแผ่นกระดาษหรือเพียงแค่ผิวหนังชั้นนอกของคนเราเท่านั้น
การสลายตัวให้รังสีแอลฟา
90Th 232----->88Ra 228 + 2a 4
รังสีเบต้า
รังสี ที่ประกอบด้วยอนุภาคอิเลคตรอนหรือโพสิตรอน รังสีนี้มีคุณสมบัติทะลุทะลวงตัวกลางได้ดีกว่ารังสีแอลฟา สามารถทะลุผ่านน้ำที่ลึกประมาณ 1 นิ้วหรือประมาณความหนาของผิวเนื้อที่ฝ่ามือได้ รังสีเบต้าจะถูกกั้นได้โดยใช้แผ่นอะลูมิเนียมชนิดบาง
การสลายตัวให้รังสีบีตา
79Au 198----->80Hg 198 + -1b 0
7N 13----->6C 13 + +1b 0
รังสีแกมมา
รังสี ที่เป็นคลื่นแม่เหล็กไฟฟ้าพลังงานสูง มีคุณสมบัติเช่นเดียวกันกับรังสีเอกซ์ที่สามารถทะลุผ่านร่างกายได้ การกำบังรังสีแกมมาต้องใช้วัสดุที่มีความหนาแน่นสูงเช่น ตะกั่วหรือยูเรเนียม เป็นต้น
การสลายตัวให้รังสีแกมมา
27Co 60----->-1b 0 + 28Ni 60----->28Ni60 + g
การสลายตัวของธาตุกัมมันตรังสี
            การที่ธาตุกัมมันตรังสีแผ่รังสีได้นั้นเป็นเพราะนิวเคลียสของธาตุไม่เสถียร เนื่องจากมีพลังงานส่วนเกินอยู่ภายใน ดังนั้นจึงจำเป็นต้องถ่ายเทพพลังงานส่วนเกินนี้ออกไป เพื่อให้นิวเคลียสเสถียรในที่สุด พลังงานส่วนเกินที่ปล่อยออกมาอยู่ในรูปของอนุภาคหรือรังสีต่าง ๆ เช่น อนุภาคแอลฟา อนุภาคบีตา รังสีแกมมาและไอโชโทปที่เสถียร จากการศึกษาไอโชโทปของธาตุจำนวนมาก พบว่าไอโชโทปที่นิวเคลียสมีอัตราส่วนระหว่าจำนวนนิวตรอนต่อโปรตอนไม่เหมาะสม คือนิวเคลียสที่มีจำนวนนิวตรอนมาก หรือ น้อยกว่าจำนวนโปรตอนมักจะไม่เสถียรจะมีการแผ่รังสีออกมาจนได้ไอโชโทปของธาตุใหม่ที่เสถียรกว่า นอกจากนั้นยังพบว่าจำนวนโปรตอนและนิวตรอนที่เป็นจำนวนคู่ หรือคี่ในนิวเคลียสนั้น มีความสัมพันธ์กับความเสถียรภาพของนิวเคลียสด้วย กล่าวคือ ไอโชโทปของธาตุที่มีจำนวนโปรตอน และนิวตรอนเป็นเลขคู่ จะเสถียรกว่าไอโชโทปของธาตุที่มีจำนวนโปรตอนและนิวตอนเป็นเลขคี่เช่น 714N เป็นไอโซโทปที่เสถียร 715N พบว่า 714N มีจำนวนโปรตอนและจำนวนนิวตรอน จึงเสถียรกว่า 715Nที่มีจำนวนโปรตอนไม่เท่ากับจำนวนนิวตรอน816O เป็นไอโซโทปที่เสถียรกว่า817O เพราะ 816O มีจำนวนโปรตอนและจำนวนนิวตรอนเท่ากัน จึงเสถียรกว่า817O ที่มีจำนวนนิวตรอนเป็นเลขคี่ และจำนวนโปรตอนเป็นเลขคู่
ครึ่งชีวิตของธาตุกัมมันตรังสี
ครึ่งชีวิตของธาตุ (half life) หมายถึง ระยะเวลาที่สารสลายตัวไปจนเหลือเพียงครึ่งหนึ่งของปริมาณเดิมใช้สัญลักษณ์เป็น t1/2 นิวเคลียสของธาตุกัมมันตรังสีที่ไม่เสถียร จะสลายตัวและแผ่รังสีได้เองตลอดเวลาโดยไม่ขึ้นอยู่กับอุณหภูมิหรือความดัน อัตราการสลายตัว เป็นสัดส่วนโดยตรงกับจำนวนอนุภาคในธาตุกัมมันตรังสีนั้น ปริมาณการสลายตัวจะบอกเป็นครึ่งชีวิตเป็นสมบัติเฉพาะตัวของแต่ละไอโซโทป
ตัวอย่างเช่น C-14 มีครึ่งชีวิต 5730 ปี หมายความว่า ถ้ามี C-14 1 กรัม เมื่อเวลาผ่านไป 5730 ปี จะเหลือ C-14 อยู่ 0.5 กรัม และเมื่อเวลาผ่านไปอีก 5730 ปี จะเหลืออยู่ 0.25 กรัม เป็นดังนี้ไปเรื่อยๆ กล่าวได้ว่าทุกๆ 5730 ปี จะเหลือ C-14 เพียงครึ่งหนึ่งของปริมาณเดิม
ครึ่งชีวิตเป็นสมบัติเฉพาะตัวของแต่ละไอโซโทป และสามารถใช้เปรียบเทียบอัตราการสลายตัวของธาตุกัมมันตรังสีแต่ละชนิดได้ ตัวย่างครึ่งชีวิตของไอโซโทปกัมมันตรังสีบางชนิด ครึ่งชีวิตของธาตุกัมมันตรังสีชนิดต่างๆมีค่าไม่เท่ากัน เช่น เทคนีเทียม -99 มีครึ่งชีวิต 6 ชั่วโมงเท่านั้น ส่วนยูเรเนียม -235 มีครึ่งชีวิต 4.5 ล้านปี
ครึ่งชีวิต (half life) ของสารกัมมันตรังสี สามารถนำไปใช้หาอายุอายุสัมบูรณ์ (Absolute Age) เป็นอายุของหินหรือซากดึกดำบรรพ์ ที่สามารถบอกจำนวนปีที่ค่อนข้างแน่นอน การหาอายุสัมบูรณ์ใช้วิธีคำนวณจากครึ่งชีวิต ของธาตุกัมมันตรังสีที่มีอยู่ในหิน หรือซากดึกดำบรรพ์ที่ต้องการศึกษา ธาตุกัมมันตรังสีที่นิยมนำมาหาอายุสัมบูรณ์ได้แก่ ธาตุคาร์บอน – 14 ธาตุโพแทศเซียม – 40 ธตาเรเดียม – 226 และธาตุยูเรเนียม – 238 เป็นต้น การหาอายุสัมบูรณ์มักใช้กับหินที่มีอายุมากเป็นแสนล้านปี เช่น หินแกรนิตบริเวณฝั่งตะวันตกของเกาะภูเก็ต ซึ่งเคยเป็นหินต้นกำเนิดแร่ดีบุกมีอายุสัมบูรณ์ประมาณ 100 ล้านปี ส่วนตะกอนและซากดึกดำบรรพ์ที่มีอายุน้อยกว่า 50,000 ปี มักจะใช้วิธีกัมมันตภาพรังสีคาร์บอน – 14 เช่น ซากหอยนางรมที่วัดเจดีย์หอย อำเภอลาดหลุมแก้ว จังหวัดปทุมธานี มีอายุประมาณ 5,500 ปีของวัตถุโบราณ
นอกจากนั้นยังใช้คำนวณอายุของโลก พบว่าว่าประมาณครึ่งหนึ่งของยูเรเนียมที่มีมาแต่แรกเริ่มได้สลายตัวเป็นตะกั่วไปแล้ว ดังนั้นอายุของโลกคือประมาณครึ่งชีวิตของยูเรเนียม หรือราว 4,500 ล้านปี
ประโยชน์ของครึ่งชีวิต
ครึ่งชีวิตสามารถใช้หาอายุของวัตถุโบราณที่มีธาตุคาร์บอนเป็นองค์ประกอบ เรียกว่าวิธี Radiocarbon Dating ซึ่งคำว่า dating หมายถึง การหาอายุจึงมักใช้หาอายุของวัตถุโบราณที่มีคุณค่าทางประวิติศาสตร์
หลักการสำคัญของการหาอายุวัตถุโบราณโดยวิธี Radiocarbon Dating เป็นหลักการที่อาศัยความรู้เกี่ยวกับกัมมันตภาพรังสีที่เกิดขึ้นเองในอากาศ ตัวการที่สำคัญคือ รังสีคอสมิก ซึงอยู่ในบรรยากาศเหนือพื้นโลก มีความเข้มสูงจนทำให้นิวเคลียสขององค์ประกอบของอากาศแตกตัวออก ให้อนุภาคนิวตรอน แล้วอนุภาคนิวตรอนชนกับไนโตรเจนในอากาศ
ตารางครึ่งชีวิตของธาตุกัมมันตรังสีบางชนิด
ตารางที่ 1 แสดงครึ่งชีวิตของธาตุกัมมันตรังสีบางธาตุและชนิดของการสลายตัว
ข้อควรจำ
1. ในทางปฏิบัติการวัดหาจำนวนนิวเคลียสโดยตรงกระทำได้ยาก และเนื่องจากจำนวนนิวเคลียสในสารหนึ่ง ๆ จะเป็นสัดส่วนกับปริมาณของสารนั้น ๆ ดังนั้นจึงพิจารณาเป็นค่ากัมมันตภาพหรืการวัดมวลแทน ดังนี้
โดยที่ A0 คือกัมมันตภาพที่เวลาเริ่มต้น (t=0)
โดยที่ m0 คือมวลสารตั้งต้นที่เวลาเริ่มต้น (t=0)
ประโยชน์และโทษของธาตุกัมมันตรังสี
ในทางอุตสาหกรรม ใช้รังสีวัดวามหนาของวัสดุในโรงงานผลิตกระดาษ ผลิตแผ่นยาง และแผ่นโลหะ ใช้รังสีในการวิเคราะห์ส่วนประกอบของผลิตภัณฑ์ เช่น โลหะผสม แร่ ถ่านหิน และตรวจสอบรอยเชื่อม–รอนร้าวในโลหะหรือโครงสร้างอาคาร ใช้ยูเรเนียมเป็นเชื้อเพลิงสำหรับผลิตกระแสไฟฟ้าในโรงไฟฟ้านิวเคลียร์
ทางการเกษตร ใช้รังสีในการถนอมอาหารเพื่อยืดอายุการเก็บรักษาอาหาร เพราะรังสีจะทำลายแบคทีเรียและจุลินทรีย์ที่ก่อให้เกิดการเน่าเสียในอาหาร ใช้รังสีเพื่อปรับปรุงพันธุ์พืชให้มีความแข็งแรงต้านทานต่อโรคและแมลง เพื่อเพิ่มผลผลิตให้สูงขึ้นครึ่งชีวิตของธาตุกัมมันตรังสี
ครึ่งชีวิตของธาตุ (half life) หมายถึง ระยะเวลาที่สารสลายตัวไปจนเหลือเพียงครึ่งหนึ่งของปริมาณเดิมใช้สัญลักษณ์เป็น t1/2 นิวเคลียสของธาตุกัมมันตรังสีที่ไม่เสถียร จะสลายตัวและแผ่รังสีได้เองตลอดเวลาโดยไม่ขึ้นอยู่กับอุณหภูมิหรือความดัน อัตราการสลายตัว เป็นสัดส่วนโดยตรงกับจำนวนอนุภาคในธาตุกัมมันตรังสีนั้น ปริมาณการสลายตัวจะบอกเป็นครึ่งชีวิตเป็นสมบัติเฉพาะตัวของแต่ละไอโซโทป
ตัวอย่างเช่น C-14 มีครึ่งชีวิต 5730 ปี หมายความว่า ถ้ามี C-14 1 กรัม เมื่อเวลาผ่านไป 5730 ปี จะเหลือ C-14 อยู่ 0.5 กรัม และเมื่อเวลาผ่านไปอีก 5730 ปี จะเหลืออยู่ 0.25 กรัม เป็นดังนี้ไปเรื่อยๆ กล่าวได้ว่าทุกๆ 5730 ปี จะเหลือ C-14 เพียงครึ่งหนึ่งของปริมาณเดิม
ครึ่งชีวิตเป็นสมบัติเฉพาะตัวของแต่ละไอโซโทป และสามารถใช้เปรียบเทียบอัตราการสลายตัวของธาตุกัมมันตรังสีแต่ละชนิดได้ ตัวย่างครึ่งชีวิตของไอโซโทปกัมมันตรังสีบางชนิด ครึ่งชีวิตของธาตุกัมมันตรังสีชนิดต่างๆมีค่าไม่เท่ากัน เช่น เทคนีเทียม -99 มีครึ่งชีวิต 6 ชั่วโมงเท่านั้น ส่วนยูเรเนียม -235 มีครึ่งชีวิต 4.5 ล้านปี
ครึ่งชีวิต (half life) ของสารกัมมันตรังสี สามารถนำไปใช้หาอายุอายุสัมบูรณ์ (Absolute Age) เป็นอายุของหินหรือซากดึกดำบรรพ์ ที่สามารถบอกจำนวนปีที่ค่อนข้างแน่นอน การหาอายุสัมบูรณ์ใช้วิธีคำนวณจากครึ่งชีวิต ของธาตุกัมมันตรังสีที่มีอยู่ในหิน หรือซากดึกดำบรรพ์ที่ต้องการศึกษา ธาตุกัมมันตรังสีที่นิยมนำมาหาอายุสัมบูรณ์ได้แก่ ธาตุคาร์บอน – 14 ธาตุโพแทศเซียม – 40 ธตาเรเดียม – 226 และธาตุยูเรเนียม – 238 เป็นต้น การหาอายุสัมบูรณ์มักใช้กับหินที่มีอายุมากเป็นแสนล้านปี เช่น หินแกรนิตบริเวณฝั่งตะวันตกของเกาะภูเก็ต ซึ่งเคยเป็นหินต้นกำเนิดแร่ดีบุกมีอายุสัมบูรณ์ประมาณ 100 ล้านปี ส่วนตะกอนและซากดึกดำบรรพ์ที่มีอายุน้อยกว่า 50,000 ปี มักจะใช้วิธีกัมมันตภาพรังสีคาร์บอน – 14 เช่น ซากหอยนางรมที่วัดเจดีย์หอย อำเภอลาดหลุมแก้ว จังหวัดปทุมธานี มีอายุประมาณ 5,500 ปีของวัตถุโบราณ
นอกจากนั้นยังใช้คำนวณอายุของโลก พบว่าว่าประมาณครึ่งหนึ่งของยูเรเนียมที่มีมาแต่แรกเริ่มได้สลายตัวเป็นตะกั่วไปแล้ว ดังนั้นอายุของโลกคือประมาณครึ่งชีวิตของยูเรเนียม หรือราว 4,500 ล้านปี
ประโยชน์ของครึ่งชีวิต
ครึ่งชีวิตสามารถใช้หาอายุของวัตถุโบราณที่มีธาตุคาร์บอนเป็นองค์ประกอบ เรียกว่าวิธี Radiocarbon Dating ซึ่งคำว่า dating หมายถึง การหาอายุจึงมักใช้หาอายุของวัตถุโบราณที่มีคุณค่าทางประวิติศาสตร์
หลักการสำคัญของการหาอายุวัตถุโบราณโดยวิธี Radiocarbon Dating เป็นหลักการที่อาศัยความรู้เกี่ยวกับกัมมันตภาพรังสีที่เกิดขึ้นเองในอากาศ ตัวการที่สำคัญคือ รังสีคอสมิก ซึงอยู่ในบรรยากาศเหนือพื้นโลก มีความเข้มสูงจนทำให้นิวเคลียสขององค์ประกอบของอากาศแตกตัวออก ให้อนุภาคนิวตรอน แล้วอนุภาคนิวตรอนชนกับไนโตรเจนในอากาศ
ตารางครึ่งชีวิตของธาตุกัมมันตรังสีบางชนิด
ตารางที่ 1 แสดงครึ่งชีวิตของธาตุกัมมันตรังสีบางธาตุและชนิดของการสลายตัว
ข้อควรจำ
1. ในทางปฏิบัติการวัดหาจำนวนนิวเคลียสโดยตรงกระทำได้ยาก และเนื่องจากจำนวนนิวเคลียสในสารหนึ่ง ๆ จะเป็นสัดส่วนกับปริมาณของสารนั้น ๆ ดังนั้นจึงพิจารณาเป็นค่ากัมมันตภาพหรืการวัดมวลแทน ดังนี้
โดยที่ A0 คือกัมมันตภาพที่เวลาเริ่มต้น (t=0)
โดยที่ m0 คือมวลสารตั้งต้นที่เวลาเริ่มต้น (t=0)
ประโยชน์และโทษของธาตุกัมมันตรังสี
ในทางอุตสาหกรรม ใช้รังสีวัดวามหนาของวัสดุในโรงงานผลิตกระดาษ ผลิตแผ่นยาง และแผ่นโลหะ ใช้รังสีในการวิเคราะห์ส่วนประกอบของผลิตภัณฑ์ เช่น โลหะผสม แร่ ถ่านหิน และตรวจสอบรอยเชื่อม–รอนร้าวในโลหะหรือโครงสร้างอาคาร ใช้ยูเรเนียมเป็นเชื้อเพลิงสำหรับผลิตกระแสไฟฟ้าในโรงไฟฟ้านิวเคลียร์
ทางการเกษตร ใช้รังสีในการถนอมอาหารเพื่อยืดอายุการเก็บรักษาอาหาร เพราะรังสีจะทำลายแบคทีเรียและจุลินทรีย์ที่ก่อให้เกิดการเน่าเสียในอาหาร ใช้รังสีเพื่อปรับปรุงพันธุ์พืชให้มีความแข็งแรงต้านทานต่อโรคและแมลง เพื่อเพิ่มผลผลิตให้สูงขึ้นครึ่งชีวิตของธาตุกัมมันตรังสี
ครึ่งชีวิตของธาตุ (half life) หมายถึง ระยะเวลาที่สารสลายตัวไปจนเหลือเพียงครึ่งหนึ่งของปริมาณเดิมใช้สัญลักษณ์เป็น t1/2 นิวเคลียสของธาตุกัมมันตรังสีที่ไม่เสถียร จะสลายตัวและแผ่รังสีได้เองตลอดเวลาโดยไม่ขึ้นอยู่กับอุณหภูมิหรือความดัน อัตราการสลายตัว เป็นสัดส่วนโดยตรงกับจำนวนอนุภาคในธาตุกัมมันตรังสีนั้น ปริมาณการสลายตัวจะบอกเป็นครึ่งชีวิตเป็นสมบัติเฉพาะตัวของแต่ละไอโซโทป
ตัวอย่างเช่น C-14 มีครึ่งชีวิต 5730 ปี หมายความว่า ถ้ามี C-14 1 กรัม เมื่อเวลาผ่านไป 5730 ปี จะเหลือ C-14 อยู่ 0.5 กรัม และเมื่อเวลาผ่านไปอีก 5730 ปี จะเหลืออยู่ 0.25 กรัม เป็นดังนี้ไปเรื่อยๆ กล่าวได้ว่าทุกๆ 5730 ปี จะเหลือ C-14 เพียงครึ่งหนึ่งของปริมาณเดิม
ครึ่งชีวิตเป็นสมบัติเฉพาะตัวของแต่ละไอโซโทป และสามารถใช้เปรียบเทียบอัตราการสลายตัวของธาตุกัมมันตรังสีแต่ละชนิดได้ ตัวย่างครึ่งชีวิตของไอโซโทปกัมมันตรังสีบางชนิด ครึ่งชีวิตของธาตุกัมมันตรังสีชนิดต่างๆมีค่าไม่เท่ากัน เช่น เทคนีเทียม -99 มีครึ่งชีวิต 6 ชั่วโมงเท่านั้น ส่วนยูเรเนียม -235 มีครึ่งชีวิต 4.5 ล้านปี
ครึ่งชีวิต (half life) ของสารกัมมันตรังสี สามารถนำไปใช้หาอายุอายุสัมบูรณ์ (Absolute Age) เป็นอายุของหินหรือซากดึกดำบรรพ์ ที่สามารถบอกจำนวนปีที่ค่อนข้างแน่นอน การหาอายุสัมบูรณ์ใช้วิธีคำนวณจากครึ่งชีวิต ของธาตุกัมมันตรังสีที่มีอยู่ในหิน หรือซากดึกดำบรรพ์ที่ต้องการศึกษา ธาตุกัมมันตรังสีที่นิยมนำมาหาอายุสัมบูรณ์ได้แก่ ธาตุคาร์บอน – 14 ธาตุโพแทศเซียม – 40 ธตาเรเดียม – 226 และธาตุยูเรเนียม – 238 เป็นต้น การหาอายุสัมบูรณ์มักใช้กับหินที่มีอายุมากเป็นแสนล้านปี เช่น หินแกรนิตบริเวณฝั่งตะวันตกของเกาะภูเก็ต ซึ่งเคยเป็นหินต้นกำเนิดแร่ดีบุกมีอายุสัมบูรณ์ประมาณ 100 ล้านปี ส่วนตะกอนและซากดึกดำบรรพ์ที่มีอายุน้อยกว่า 50,000 ปี มักจะใช้วิธีกัมมันตภาพรังสีคาร์บอน – 14 เช่น ซากหอยนางรมที่วัดเจดีย์หอย อำเภอลาดหลุมแก้ว จังหวัดปทุมธานี มีอายุประมาณ 5,500 ปีของวัตถุโบราณ
นอกจากนั้นยังใช้คำนวณอายุของโลก พบว่าว่าประมาณครึ่งหนึ่งของยูเรเนียมที่มีมาแต่แรกเริ่มได้สลายตัวเป็นตะกั่วไปแล้ว ดังนั้นอายุของโลกคือประมาณครึ่งชีวิตของยูเรเนียม หรือราว 4,500 ล้านปี
ประโยชน์ของครึ่งชีวิต
ครึ่งชีวิตสามารถใช้หาอายุของวัตถุโบราณที่มีธาตุคาร์บอนเป็นองค์ประกอบ เรียกว่าวิธี Radiocarbon Dating ซึ่งคำว่า dating หมายถึง การหาอายุจึงมักใช้หาอายุของวัตถุโบราณที่มีคุณค่าทางประวิติศาสตร์
หลักการสำคัญของการหาอายุวัตถุโบราณโดยวิธี Radiocarbon Dating เป็นหลักการที่อาศัยความรู้เกี่ยวกับกัมมันตภาพรังสีที่เกิดขึ้นเองในอากาศ ตัวการที่สำคัญคือ รังสีคอสมิก ซึงอยู่ในบรรยากาศเหนือพื้นโลก มีความเข้มสูงจนทำให้นิวเคลียสขององค์ประกอบของอากาศแตกตัวออก ให้อนุภาคนิวตรอน แล้วอนุภาคนิวตรอนชนกับไนโตรเจนในอากาศ
ตารางครึ่งชีวิตของธาตุกัมมันตรังสีบางชนิด
ตารางที่ 1 แสดงครึ่งชีวิตของธาตุกัมมันตรังสีบางธาตุและชนิดของการสลายตัว
ข้อควรจำ
1. ในทางปฏิบัติการวัดหาจำนวนนิวเคลียสโดยตรงกระทำได้ยาก และเนื่องจากจำนวนนิวเคลียสในสารหนึ่ง ๆ จะเป็นสัดส่วนกับปริมาณของสารนั้น ๆ ดังนั้นจึงพิจารณาเป็นค่ากัมมันตภาพหรืการวัดมวลแทน ดังนี้
โดยที่ A0 คือกัมมันตภาพที่เวลาเริ่มต้น (t=0)
โดยที่ m0 คือมวลสารตั้งต้นที่เวลาเริ่มต้น (t=0)
ประโยชน์และโทษของธาตุกัมมันตรังสี
ในทางอุตสาหกรรม ใช้รังสีวัดวามหนาของวัสดุในโรงงานผลิตกระดาษ ผลิตแผ่นยาง และแผ่นโลหะ ใช้รังสีในการวิเคราะห์ส่วนประกอบของผลิตภัณฑ์ เช่น โลหะผสม แร่ ถ่านหิน และตรวจสอบรอยเชื่อม–รอนร้าวในโลหะหรือโครงสร้างอาคาร ใช้ยูเรเนียมเป็นเชื้อเพลิงสำหรับผลิตกระแสไฟฟ้าในโรงไฟฟ้านิวเคลียร์
ทางการเกษตร ใช้รังสีในการถนอมอาหารเพื่อยืดอายุการเก็บรักษาอาหาร เพราะรังสีจะทำลายแบคทีเรียและจุลินทรีย์ที่ก่อให้เกิดการเน่าเสียในอาหาร ใช้รังสีเพื่อปรับปรุงพันธุ์พืชให้มีความแข็งแรงต้านทานต่อโรคและแมลง เพื่อเพิ่มผลผลิตให้สูงขึ้น

บทที่ 1 ความปลอดภัยในห้องปฏิบัติการ

 ความปลอดภัยในห้องปฏิบัติการ 1.1 ความปลอดภัยในการทำงานกับสารเคมี     1.1.1 ประเภทของสารเคมี  สารเคมีมีหลายประเภท แต่ละประเภทมีสมบัติต่างกัน ...